	OURSE			YEAR OF			
	CODE	COURSE NAME	L-T-P-C	INTRODUCTION			
	EC301	Digital Signal Processing	3-1-0-4	2016			
		C 202 Signals & Systems					
Course objectives:							
	-	de an understanding of the principles	-	applications of DSP			
	•	the design techniques for digital filter an understanding of Multi-rate Signal		ita applicationa			
	0	duce the architecture of DSP processor	U	its applications			
	abus	duce the areintecture of DST processor	5				
v		r Transform and its Properties, Linear	Filtering meth	ods based on the DFT			
		ysis of signals using the DFT, Compu	U				
		ing Radix-2 FFT Algorithms, Efficie		0			
		a 2N-Point real sequence, Design of F					
Filte	ers using wi	ndow methods and frequency sampling	g method, Desig	n of IIR Digital Filters			
		lters, IIR Filter Design, Frequency T					
		ctures, Introduction to TMS320C67x	0 0	1			
-	0	rocessing, Finite word length effects in	n DSP systems,	IIR digital filters, FFT			
Ŭ	orithms.						
-	ected outco						
The		ll understand	lamplications				
	· · · ·	inciple of digital signal processing and tilization of DSP to electronics engine					
Tev	t Books:	tinzation of DST to electronics engines	ening				
		A. V., Schafer R. W. and Buck J. R.,	Discrete Time	Signal Processing, 3/e.			
	Prentice Hal		2 10 01 0 00 1 1110	, , , , , , , , , , , , , , , , , , ,			
		and Manolakis D. G., Digital Signation	al Processing, 4	/e, Pearson Education,			
	2007.						
Ref	erences:						
		Rulph., DSP applications using C and	the TMS320C	6x DSK. Vol. 13. John			
	Wiley & So						
		C. and Jervis B. W., Digital Signal P.	rocessing: A P	ractical Approach, 2/e,			
		cation, 2009. hard G., Understanding Digital Signa	1 Processing	Ve Degreen Education			
]	India, 2004.						
	Mitra S. K., (India), 2014	Digital Signal Processing: A Comput 4.	ter Based Appro	oach, 4/e McGraw Hill			
		, Digital Signal Processing, 2e, Mc Gra	aw –Hill Educa	tion New Delhi, 2013			
	-	, Digital Signal Processing, 3e, Mc Gr					
	(Smart book						
	-	Srinivasan S., Digital Signal Proc	essing: Impler	nentation Using DSP			
	Microproces						

	Course Plan	-	
Module	Course content	Hours	End Sem. Exam Marks
	The Discrete Fourier Transform: DFT as a linear transformation, Relationship of the DFT to other transforms, IDFT	2	
	Properties of DFT and examples Circular convolution	4	15
Ι	Linear Filtering methods based on the DFT- linear convolution using circular convolution, overlap save and overlap add methods	3	15
	Frequency Analysis of Signals using the DFT	2	
	Computation of DFT: Radix-2 Decimation in Time and Decimation in Frequency FFT Algorithms	3	
II	IDFT computation using Radix-2 FFT Algorithms	2	15
	Efficient computation of DFT of Two Real Sequences and a 2N-Point Real Sequence	2	
	FIRST INTERNAL EXAM		
	Design of FIR Filters- Symmetric and Anti-symmetric FIR Filters	2	
III	Design of linear phase FIR Filters using Window methods (rectangular, Hamming and Hanning) and frequency sampling Method	6	15
	Comparison of Design Methods for Linear Phase FIR Filters	1	
	Design of IIR Digital Filters from Analog Filters (Butterworth)	4	
IV	IIR Filter Design by Impulse Invariance, and Bilinear Transformation	3	15
	Frequency Transformations in the Analog and Digital Domain	2	
	SECOND INTERNAL EXAM		
	Block diagram and signal flow graph representations of filters	1	
	FIR Filter Structures: (Linear structures), Direct Form, Cascade Form and Lattice Structure	3	
\mathbf{V}	IIR Filter Structures: Direct Form, Transposed Form, Cascade Form and Parallel Form	2	20
	Computational Complexity of Digital filter structures	1	_
	Computer architecture for signal processing : Introduction to TMS320C67xx digital signal processor	2	
X 7 X	Multi-rate Digital Signal Processing: Decimation and Interpolation (Time domain and Frequency Domain Interpretation without proof)	3	20
VI	Finite word length effects in DSP systems: Introduction (analysis not required), fixed-point and floating-point DSP arithmetic, ADC quantization noise	2	- 20

Finite word length effects in IIR digital filters: coefficient quantization errors	2			
Finite word length effects in FFT algorithms: Round off errors	2			
END SEMESTER EXAM				

Question Paper Pattern (End Sem Exam)

Maximum Marks: 100

Time : 3 hours

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 40 % for theory and 60% for logical/numerical problems, derivation and proof.

	COURSE			YEAR OF
	CODE	COURSE NAME	L-T-P-C	INTRODUCTION
	EC303	Applied Electromagnetic Theory	3-0-0-3	2016
Pr	erequisite: N	Jil		
Co	ourse objecti	ves:		
1.		e basic mathematical concepts related to	U	
2.		nowledge on the basic concepts of elect		
3.		a solid foundation in the analysis and a	pplication of el	ectromagnetic fields,
		equations and Poynting theorem.		
4.		familiar with propagation of signal thro	ugh transmissi	on lines and
	waveguides			
•	llabus:			
		nsformation, vector algebra, vector cal		
		tions, Boundary condition, Solution of		
		different media, Poynting vector theory	rem, transmiss	ion lines, Smith chart,
	aveguides.			
	pected outco			
		e course, students will be able:		
1.	-	a solid foundation and a fresh perspecti	ve in the analy	sis and application of
_	electromagn			
2.		he propagation of electromagnetic wav		media.
3.		the characteristics of transmission lines.		
4.		e different transmission line problems us		rt
5.		nd the different modes of propagation in	n waveguides.	
	xt Books:			
1.		us, Electromagnetics, 5/e, TMH, 2010.	0 0 111	
2.		D Sadiku, Elements of Electromagnetics		-
3.		, Jf Hayt, and John A. Buck. Engineerir	ig Electromagn	ietics. McGraw-Hill,
<u> </u>		7-Hill, 2014.		
	ferences:			DIII 0/ 2012
1.		Balmain, Electromagnetic waves and R	•••	
2.	Joseph A Ec 1995	lminister, Electromagnetics, Schaum's	Outline Series	McGraw Hill, 4/e,
3.		onus, Applied Electromagnetics, McG	$r_{\rm OW}$ Hill $2/2.10$	78
э. 4.		O. Sadiku & S.V. Kulkarni "'Principles	, ,	
ᅻ.		Press Inc. Sixth Edition, Asian Edition, 2		, OA1010
5.	•	ni Narayana Rao, Elements of Engineeri		metics Pearson 6/e
5.	2006.	in rearrayana Rao, Elements of Englicen		1101105, 1 0ar5011, 0/0,
6		an and Aziz S. Inan, Engineering Elect	romagnetics P	earson 2010

6. Umran S. Inan and Aziz S. Inan, Engineering Electromagnetics, Pearson, 2010.

Course P			-
Module	Course content	Hours	End Sem. Exam Marks
	Review of vector calculus, Spherical and Cylindrical coordinate system, Coordinate transformation	1	0
	Curl, Divergence, Gradient in spherical and cylindrical coordinate system.	1	
	Electric field – Application of Coulomb's law, Gauss law and Amperes current law (proof not required, simple problems only)	1	
Ι	Poisson and Laplace equations (proof not required, simple problems only), Determination of E and V using Laplace equation.	1	- 15
	Derivation of capacitance and inductance of two wire transmission line and coaxial cable. Energy stored in Electric and Magnetic field.	2	15
	Displacement current density, continuity equation. Magnetic vector potential. Relation between scalar potential and vector potential.	2	
	Maxwell's equation from fundamental laws.	1	
	Boundary condition of electric field and magnetic field from Maxwell's equations	1	
II	Solution of wave equation	1	15
	Propagation of plane EM wave in perfect dielectric, lossy medium, good conductor, media-attenuation, phase velocity, group velocity, skin depth.	3	
	FIRST INTERNAL EXAM		
	Reflection and refraction of plane electromagnetic waves at boundaries for normal & oblique incidence (parallel and perpendicular polarization), Snell's law of refraction, Brewster angle.	4	
III	Power density of EM wave, Poynting vector theorem, Complex Poynting vector.	3	15
	Polarization of electromagnetic wave-linear, circular and elliptical polarisation.	2	
	Uniform lossless transmission line - line parameters	1	
IV	Transmission line equations, Voltage and Current distribution of a line terminated with load	2	15
	Reflection coefficient and VSWR. Derivation of input impedance of transmission line.	2	
	SECOND INTERNAL EXAM		
	Transmission line as circuit elements (L and C).	2	
V	Half wave and quarter wave transmission lines.	1	20
·	Development of Smith chart - calculation of line impedance and VSWR using smith chart.	2	

	Single stub matching (Smith chart and analytical method).	2	
	Parallel-Plate Waveguide - TE & TM waves.	1	
VI	The hollow rectangular wave guide – modes of propagation of wave- dominant mode, group velocity and phase velocity - derivation and simple problems only.	3	20
	Attenuation in wave guides, guide wavelength and impedance -derivation and simple problems only.	3	
END SEMESTER EXAM			

Question Paper (End semester exam)

Maximum marks : 100

Time: 3 hours

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 50 % for theory and 50% for logical/numerical problems, derivation and proof.

Course cod	e Course Name	L-T-P - Credit		Year of roduction
HS300	Principles of Management	3-0-0-3		2016
Prerequisite				
Course Obj	ectives			
0	evelop ability to critically analyse and evaluate	e a variety of mana	agement pr	actices in
	ontemporary context;	·	0	
	nderstand and apply a variety of management			
	e able to mirror existing practices or to generat		ative mana	gement
1	betencies, required for today's complex and glo	1 '		
	e able to critically reflect on ethical theories ar	nd social responsib	ility ideolo	ogies to
	e sustainable organisations.			
Syllabus				
	oles and functions of a manager, manageme			
	challenges and the concepts like, compet			
	Early contributors and their contributions to			
-	oonsibility. Planning, Organizing, Staffing			-
-	Decision making under certainty, uncert	ainty and risk,	creative p	rocess and
	nvolved in decision making.			
Expected of		0		
A student v i.	who has undergone this course would be able t manage people and organisations	0		
ii.	critically analyse and evaluate management	theories and prac	tices	
iii.	plan and make decisions for organisations	theories and pract	lices	
iv.	do staffing and related HRD functions			
Text Book				
	ontz and Heinz Weihrich, Essentials of Manag	ement. McGraw F	Iill Compa	nies 10th
Edition.			ini compu	
References				
	. Daft, New era Management, 11th Edition, G	Cengage Learning		
	. Griffin, Management Principles and Applic	0000		e Learning
	. Heinz Weirich, Mark V Cannice and Harole			
	Innovative and Entrepreneurial Perspective	e, McGraw Hill Ed	lucation, 1-	4th Edition
4	. Peter F Drucker, The Practice of Management	ent, McGraw Hill,	New York	K
5			on Educati	on
	Course Plan	1		
Module	Contents		Hours	Sem. Exam
				Marks
I I	ntroduction to Management: definitions, man	agerial roles and		
	unctions; Science or Art perspectives- Extern	-		
	lobal, innovative and entrepreneurial			
0	Janagement (3 Hrs.)– Managing people and		6	
	ne context of New Era- Managing for compet		-	
	ne Challenges of Management (3 Hrs.)	0		15%

	Early Contributions and Ethics in Management: Scientific		
	Management- contributions of Taylor, Gilbreths, Human		
II	Relations approach-contributions of Mayo, McGregor's		
11	Theory, Ouchi's Theory Z (3 Hrs.) Systems Approach, the		
	Contingency Approach, the Mckinsey 7-S Framework		
	Corporate Social responsibility- Managerial Ethics. (3 Hrs)	6	150/
	FIRST INTERNAL EXAMINATION	0	15%
III	Planning: Nature and importance of planning, -types of plans (3 Hrs.)- Steps in planning, Levels of planning - The Planning	6	15%
	Process. – MBO (3 Hrs.).	0	10 /0
	Organising for decision making: Nature of organizing,		
	organization levels and span of control in management		
	Organisational design and structure -departmentation, line and		
IV	staff concepts (3 Hrs.) Limitations of decision making-		
	Evaluation and selecting from alternatives- programmed and	6	15%
	non programmed decisions - decision under certainty,		
	uncertainty and risk-creative process and innovation (3 Hrs.)		
	SECOND INTERNAL EXAMINATION		
	Staffing and related HRD Functions: definition,		
	Empowerment, staff – delegation, decentralization and		
	recentralisation of authority - Effective Organizing and		
\mathbf{V}	culture-responsive organizations –Global and entrepreneurial	0	2004
	organizing (3 Hrs.) Manager inventory chart-matching person	9	20%
	with the job-system approach to selection (3 Hrs.) Job design-		
	skills and personal characteristics needed in managers-		
	selection process, techniques and instruments (3 Hrs.)		
	Leading and Controlling: Leading Vs Managing – Trait		
	approach and Contingency approaches to leadership -		
	Dimensions of Leadership (3 Hrs.) - Leadership Behavior and		
VI	styles – Transactional and Transformational Leadership (3	9	200/
	Hrs.) Basic control process- control as a feedback system –	9	20%
	Feed Forward Control – Requirements for effective control –		
	control techniques – Overall controls and preventive controls –		
	Global controlling (3 Hrs.)		
	END SEMESTER EXAM		

Question Paper Pattern

Max. marks: 100, Time: 3 hours . The question paper shall consist of three parts

Part A: 4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)
Part B: 4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)
Part C: 6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

COURSE			YEAR OF		
CODE	COURSE NAME	L-T-P-C	INTRODUCTION		
EC305	Microprocessor & Microcontroller	3-0-0-3	2016		

Prerequisite: EC207 Logic Circuit Design

Course objectives:

- 1. To understand fundamental operating concepts of microprocessors and microcontrollers.
- 2. To communicate with various devices using controller.
- 3. To design a microcontroller based system with the help of the interfacing devices.
- 4. To program the controller to make various peripherals work for specified application.

Syllabus:

Microprocessors: 8085 architecture and its operation, microprocessor initiated operations and bus organization, pin configuration and functions, generation of control signals for external operations- fetch, IO/M, read/write, machine cycles and bus timings. Addressing modes, instruction set, instruction classification. Overview/concept of peripheral IC interfacing with 8085 microprocessor (8251, 8253, 8255, 8279). Simple examples in assembly language programming for 8085 (only for internal examination). Introduction to development tools: IDE, cross assembler, builder, linker and debugger.(not required for exam). Introduction to 8086 and comparison between 8086, 80286, 80386, 80486 and Pentium.

Microcontrollers: 8051- features, architecture, memory organization, registers, I/O ports, pin configuration and functions. Addressing modes, instruction set, instruction classification. Assembly language programming. Interrupts in 8051. Timer/Counter programming: Operating modes, time delay generation, Waveform generation. Serial communication: RS 232 interface, registers in UART, modes of operation, programming examples for serial data transmission and reception. Interfacing of DIP switch, stepper motor, ADC, DAC, LEDs and seven segment displays, alphanumeric LCD module with 8051.

Expected outcome:

The students will be able to:

- 1. Distinguish various types of processor architectures.
- 2. Describe architectures, memory organization of 8085 microprocessor and 8051.
- 3. Develop programming skills in assembly for interfacing peripheral devices with 8051

Text Books:

- 1. Kenneth J. Ayala, The 8051 Microcontroller, Cengage learning, 3/e.
- 2. Lyla B.Das : Microprocessors and Microcontrollers, Pearson Education, India, 2011
- 3. Ramesh S. Goankar. 8085 Microprocessors Archiecture Application and Programming. Penram International, 5/e.

References:

- 1. Aditya P Mathur, Introduction to Microprocessor. Tata Mc Graw Hill
- 2. Han Way Hung, "PIC Microcontroller, An introduction to software and hardware interfacing", Cenage learning.
- 3. I.Scott Mackenzie, Raphel C.-W Phan, The 8051 microcontroller, 4th edition.
- 4. Muhammed Ali Mazidi, The 8051 Microcontroller and Embedded Systems, Pearson Education, 2nd edition
- 5. Nagoorkani, Microprocessors and Microcontrollers 2e, McGraw Hill Education India, 2012.
- Soumitra Kumar Mandal. Microprocessors and Microcontrollers Architecture, Programming & Interfacing Using 8085, 8086 and 8051, McGraw Hill Education (2011).
- 7.

	Course Plan				
Module	Course content	Hours	End Sem. Exam Marks		
I	Microprocessors: Introduction, organization of a microprocessor based system, evolution of microprocessors, 8085 architecture and its operation, microprocessor initiated operations and bus organization, pin configuration and functions, generation of control signals for external operations-fetch, IO/M, read/write.	5	15		
	Machine cycles and bus timings, Addressing modes, instruction set instruction classification. Overview/concept of peripheral IC interfacing with 8085	4	15		
II	microprocessor (8251, 8253, 8255, 8279). Simple examples in assembly language programming for 8085	3			
	(only for internal examination) Introduction to development tools: IDE, cross assembler, builder, linker and debugger.(not required for exam)	3	0		
	FIRST INTERNAL EXAM				
	Introduction to 8086 and comparison between 8086,80286,80386,80486 and Pentium	2			
III	Microcontrollers: Introduction, comparison between microprocessors and microcontrollers, microcontroller families, 8051- features, architecture, memory organization, registers, I/O ports, pin configuration and functions.	6	15		
	Addressing modes, instruction set, instruction classification.	2			
IV	Assembly language programming examples for 8051.	3	15		
	SECOND INTERNAL EXAM				
	Interrupts in 8051: Types, interrupt source, interrupt handling and programming	2			
V	Timer/Counter programming: Operating modes, time delay generation, Waveform generation.	2	20		
	Serial communication: RS 232 interface, registers in UART, modes of operation, programming examples for serial data transmission and reception	2			
VI	Interfacing: Interfacing (block schematic and assembly language programming) of DIP switch, stepper motor, ADC, DAC, LEDs and seven segment displays, alphanumeric LCD module with 8051.	6	20		
	END SEMESTER EXAM				

Question Paper Pattern (End semester exam)

Max. Marks: 100

Time: 3 hours

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 80 % for theory and 20% for logical/numerical problems and programming.

COUDG			
COURSI CODE	COURSE NAME	L-T-P-C	YEAR OF INTRODUCTION
EC307	Power Electronics & Instrumentation	3-0-0-3	2016
	ite: EC205 Electronic Circuits	5005	2010
Course ob			
	vide an insight on the concepts of Power Electron	nics and Ele	ctronic instruments.
-	dy the applications of Power electronics such a		
inverte			
3. To dev	elop understanding of the concept of Transducer	s and Digital	instruments.
Syllabus:		<u> </u>	
Power ser	niconductor switches and its static and dynami	c characteris	tics. Switched mode
regulators,	SMPS, Switched mode inverters, UPS.		
Performan	ce characteristics of instruments, Measurement	of passive co	omponents, Different
Transduce	rs, Digital Instruments.		
Expected	outcome:		
The studer	ts will be able:		
	erstand the concepts of Power Electronics and th		
-	an insight on various electronic instruments, thei	r configurati	on and
	ements using them.		
	erstand the principle of operation of Transducers	5	
Text Book			
	. A., Electronic Instrumentation and Measure	ments, Oxfo	rd University Press,
2003.			N D
	M. H., "Power Electronics Circuits, Devices and	Application	s", Prentice Hall
	Third Edition, New Delhi.		T 1. 2015
	nd L., Power Electronics Essentials and Applica	tions, Wiley	India, 2015.
Reference			
	W. Hart, Power Electronics, McGraw Hill, 2011		
	n E., Measurement Systems, 5/e, McGraw Hill, 2		on and Massurant
	k A. D. and W. D. Cooper: Modern Electronic	Instrumentati	on and Measurement
	ques, 5/e, PHI, 2003.	India 2014	
	l, Power Electronics 1e, McGraw Hill Education N. and T. M. Undeland, Power Electronics: Cor		lications and Design
	Viley, 2007.	iverters, App	incations and Design,
	Instrumentation, Measurement and Analysis,4e	Mc Graw	Hill Education New
Delhi,		, mic Olaw -	
	bis D., Principles of Electronic Instrumentation,	PHI 2008	
. rauall	us D., I merpres of Electome instrumentation,	111, 2000.	

	Course Plan		
Module	Course content	Hours	End Sem. Exam Marks
	Linear Electronics versus Power Electronics - Power semiconductor switches.	1	
	Power diodes-structure, static and dynamic characteristics	2	
I	Power transistors - Power BJT, Power MOSFET, GTO and IGBT	3	15
	Steady state and switching characteristics of Power BJT, Power MOSFET and IGBT.	2	
	Introduction to Switched mode regulators	1	
	Buck, Boost and Buck-Boost DC-DC converters	2	
п	Waveforms and expression of DC-DC converters for output voltage, voltage and current ripple under continuous conduction mode. (Derivation not required)	1	15
	Isolated converters - Flyback, Forward, Push Pull, Half Bridge and Full Bridge Converters - waveforms and governing equations. (Derivation not required)	3	
	FIRST INTERNAL EXAM		
	Overview of SMPS, Switched mode inverters- Principles of PWM switching schemes.	2	
III	Single phase inverters - half bridge, full bridge and push pull.	2	15
111	UPS - on line and off line.	1	15
	Three phase inverters - PWM and Space vector modulation in three phase inverters.	3	
	Generalized configurations of instruments - Functional elements. Classification of instruments	1	
IV	Generalized performance characteristics of instruments - Static characteristics and Dynamic characteristics.	2	15
	Measurement of: resistance using Wheastone's bridge, inductance using Maxwell-Wien bridge, and capacitance using Schering's bridge.	2	
	SECOND INTERNAL EXAM		
	Transducers - Classification, Selection of transducers.	1	
	Resistance transducers - Principle of operation, strain gauge.	2	
V	Inductive Transducers: LVDT.	2	20
	Capacitive transducers - different types, capacitor microphone, Hall Effect transducer, proximity transducers.	2	
	Electronic Multimeter, Audio Power Meter, RF power meter	2	
VI	Digital Instruments - Basics, digital measurement of time, phase, frequency and digital voltmeter.	2	20
	Frequency synthesizer, Spectrum analyzers, Logic State analyzers (block diagram only).	1	

Digital storage oscilloscope – Working Principle, controls and applications.	2	
FND SEMESTER EXAM		

Question Paper Pattern (End Sem Exam)

Max. Marks: 100

Time: 3 hours

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 100 % for theory.

COURSE CODE	COURSE NAME	L-T-P-C	YEAR OF INTRODUCTION
EC333	Digital Signal Processing Lab	0-0-3-1	2016
Prerequisit			
	ctronics Design Automation Lab, EC 20	2 Signals & Syst	ems
Course obj			1 1. 1
	nable the students to explore the conce arious systems using MATLAB/SciLab/		1
List of Exp			SI KII.
	ci mento.		
	periments on Digital Signal Processo	r/ DSP kits: (All	experiments are
mandatory))		
1 (Generation of sine wave and standard tes	et cionale	
	Convolution : Linear and Circular	st signais.	
	Real Time FIR Filter implementation (L	ow-pass, High-p	ass and Band-pass) by
	nputting a signal from the signal genera		
	Real Time IIR Filter implementation (L		ass and Band-pass) by
	nputting a signal from the signal genera Sampling of analog signal and study of a		
J. C	sampling of analog signal and study of a	indshig.	
Part B: Ex	periments based on MATLAB/SciLal	b/OCTAVE (7 e	xperiments are
mandatory)		-
1 (
	Generation of Waveforms (Continuous a Verification of Sampling Theorem.	and Discrete)	
	Fime and Frequency Response of LTI sy	vstems (First and	second order).
	Linear Convolution, Circular Convolution		
	Convolution.		
	To find the DFT and IDFT for the given		
	Linear convolution using DFT (Overlap-	-	
	Γο find the DCT and IDCT for the given Γο find FFT and IFFT for the given inpu	1 1	
	FIR and IIR filter design using Filter De	1	
	FIR Filter (Low-pass, High-pass and Ba		Window method).
11. I	IR Filter (Low-pass, High-pass and Ban	nd-pass)design (H	Butterworth and Chebychev)
	Generation of AM, FM & PWM wavefo	orms and their spe	ectrum.
	Generation of DTMF signal.	motion Internal	tion Dational factor)
	Study of sampling rate conversion (Deci Filtering of noisy signals	mation, interpola	ation, Rational factor).
	mplementation of simple algorithms in	audio processing	(delay, reverb, flange etc.).
	mplementation of simple algorithms in		
f	iltering etc.)		
Expected or			
The students	s will be able to: gn, simulate and realize various systems	a malata dita DCD	
D. '		s reguled to LINP.	

COURSE CODE	COURSE NAME	L-T-P-C	YEAR OF INTRODUCTION
EC335	Power Electronics & Instrumentation Lab	0-0-3-1	2016
Prerequisit	e: NIL		
Course obje	ectives:		
• To d	esign and implement basic power electronic circuit	S	
• To st	udy the working of transducers		
• To tr	ain the usage of Digital Instruments		
List of Expe	eriments (8 experiments mandatory):		
	e I (Four mandatory)		
	sign and Set up DC-DC converter		
	sign and Set up Push pull DC- DC Converter		
	sign and Set up Buck DC-DC Converters		
	sign and Set up Simple SMPS		
	sign and Set up Half bridge and full bridge converter	S	
6. De	esign and Set up basic Inverter Circuits		
Cycl	e II (Four mandatory)		
7. Tr	ansducer measurements using diode thermometer		
	ansducer measurements using LVDT		
	ansducer measurements using Strain gauge.		
	ransducer measurements using Pressure transducer.		
	ransducer measurements using Thermocouple & RT	DS	
12. 1	ransducer measurements using Photocells		
Desi	red Experiment		
	tudy of Digital LCR meter, Frequency synthesizer, S	pectrum analy	zer and Logic State
	zer application.	F	
Expected or			
The students	s will be able to:		
1. Desi	gn and demonstrate basic power electronic circuits		
2. Use	transducers for application.		
3. Func	tion effectively as an individual and in a team to ad	ccomplish the	e given task.

Course code	Course Name L-T	-P - Credits	Year of Introduction
**341	DESIGN PROJECT	0-1-2-2	2016
	Prerequisite : Nil		
Course Objective	25		
• To underst	and the engineering aspects of design with refere	nce to simple	products
• To foster i	nnovation in design of products, processes or syst	tems	
 To develop 	o design that add value to products and solve tech	nical problem	S
Course Plan	PLARDUL KAI	AM	
study, analyse and manufacture/const handling, sustaina	mum three simple products, processes or techniquel present them. The analysis shall be focused on furuction, quality, reliability, aesthetics, ergonability, cost etc. whichever are applicable. Eachly; choosing different products, processes or techniques.	unctionality, s nomics, safet h student in	strength, material, ty, maintenance,
with detailed desig	ect team shall identify an innovative product, progn. At the end, the team has to document it proper ected to concentrate on functionality, design for st	rly and presen	t and defend it.
	ur/week allotted for tutorial shall be used for disc exceeding four) can be students from different bra	-	
Expected outcom	ne.	4	
The students will			
	nink innovatively on the development of components,	products, proce	esses or
	chnologies in the engineering field nalyse the problem requirements and arrive workable	design solution	c.
II. A	naryse the problem requirements and arrive workable	design solution	.5
Reference:			
Michael I	Luchs, Scott Swan, Abbie Griffin, 2015. Design T Sons, Inc	Thinking. 405	pages, John
Michael I		Thinking. 405	pages, John
Michael Wiley &		Thinking. 405	
Michael Wiley & Evaluation First evaluation (Sons, Inc	20 mark	s
Michael I Wiley & Evaluation First evaluation (Second evaluation	Sons, Inc Estendiately after first internal examination)	20 mark	cs cs

(COURSE CODE	COURSE NAME	L-T-P-C	YEAR OF INTRODUCTION
	EC360	Soft Computing	3-0-0 -3	2016
Pro	erequisite: N			-010
	urse objecti			
		ze various components of soft computing	ng like fuzzy lo	gic. neural networks
	and genetic		-8 J	8,
2.		overview of fuzzy Logic and to understa	and the concept	s and terminologies of
	fuzzy system		1	U
3.		escription on artificial neural networks v	with its advanta	ges and application.
	-	e fundamentals of Genetic Algorithm (C		• •
5.	To understa	nd the concepts of hybrid systems.		
Syl	llabus:			
Fuz	zzy sets and	l systems. Neural Networks - Applic	ations - typica	al architecture, pattern
Cla	assification a	and pattern Association. Fundamental	s of Genetic	Algorithm, AI search
alg	orithm and h	ybrid structure.		
Ex	pected outco	ome:		
	e students wi			
1.	Identify and	l describe soft computing techniques a	and their roles	in building intelligent
	Machines.			
		logic and reasoning to handle uncertain	•	
3.		the feasibility of applying a soft com	puting method	lology for a particular
4	Problem.	1 , 1 , , 1 , 0 , 1		1
		al networks to pattern classification and		plems.
-	11 7 2	tic algorithms to combinatorial optimiza	ation problems	
	xt Books:	and "Constin Algorithman Second O		d Mashina Lasmina"
1.		erg, "Genetic Algorithms: Search, O esley, N.Y, 1989.	pumization an	d Machine Learning,
\mathbf{r}		Estey, N. 1, 1989. . Fausett, (1993) "Fundamentals of	of Noural N	tworks. Arabitatura
۷.		and Applications", Prentice Hall.	DI INCUIAI INC	aworks. Architecture,
3		Ross, "Fuzzy Logic with Engineering A	nnlications" W	'ilev India
	ferences:	Koss, Tuzzy Logie with Engineering A		ney maia.
1.		M., Introduction to Applied Fuzzy Elec	tropics PHI 20)13
2.		R. Langari, Fuzzy Logic, Intelligenc		
2.	Education.	ite Dangari, Pazzy Dogre, interngene	c, control une	
3.		rst Course on Fuzzy Theory and Applic	ations, Springe	r-Verlag.
4.		d C.S. G. Lee, Neural Fuzzy Systems, I		-
5.		an & G.A. Vijayalakshmi Pai, "Neural		
[.		Synthesis and Applications" Prentice H		
6	•	andan and S.N. Deepa. Principles of		o Wiley India 2007

6. S.N. Sivanandan and S.N. Deepa, Principles of Soft Computing, Wiley India, 2007. ISBN: 10: 81-265-1075-7.

Hours Sem. Exam		Course Plan			
Icomputing, Fuzzy Computing, Neural Computing, Genetic Algorithms. applications of soft computing Introduction to fuzzy sets and systems-crispness, vagueness, uncertainty and fuzziness. Basics of fuzzy sets, membership 	Module	Course content	Hours	Sem.	
Iuncertainty and fuzziness. Basics of fuzzy sets, membership functions, support of a fuzzy set height, normalized fuzzy set, alpha cuts.3IIType- 2 fuzzy sets. Operation on fuzzy set-complement, intersection, union, Demorgan's Law Equality & subset hood.4IIExtension Principle and its application, Fuzzy relation- operations, projection, max-min, min-max composition, cylindrical extension.15IIIReflexivity, symmetry and transitivity of fuzzy relations. Fuzzy prepositions, fuzzy connectives, linguistic variables, hedges.4IIIApproximate reasoning or fuzzy inference, Fuzzy rule based system. Fuzzification and defuzzification using centroid, centre of sums.4IVIntroduction to Neural Networks - Applications -Biological neuron- Typical architecture of Artificial Neural Networks - Supervised and Unsupervised learning4VExcoND INTERNAL EXAM Supervised and Unsupervised learning4VBack propagation network and its architecture, Back propagation learning, back propagation algorithm2VIGenetic Algorithm Basic concepts, Initialization and selection, Survival of the Fittest - Fitness Computations.520		computing, Fuzzy Computing, Neural Computing, Genetic Algorithms. applications of soft computing	2		
IIintersection, union, Demorgan's Law Equality & subset hood.4IIExtension Principle and its application, Fuzzy relation- operations, projection, max-min, min-max composition, cylindrical extension.15 FIRST INTERNAL EXAM IIIReflexivity, symmetry and transitivity of fuzzy relations. Fuzzy prepositions, fuzzy connectives, linguistic variables, hedges.4IIIApproximate reasoning or fuzzy inference, Fuzzy rule based system. Fuzzification and defuzzification using centroid, centre of sums.4IVIntroduction to Neural Networks - Applications –Biological neuron- Typical architecture of Artificial Neural Networks - Common activation function.4ISECOND INTERNAL EXAMIntera Separability, Pattern Classification: Perceptrons2Back propagation network and its architecture, Back propagation learning, back propagation algorithmQenetic Algorithm Basic concepts, Initialization and selection, Survival of the Fittest - Fitness Computations.	Ι	uncertainty and fuzziness. Basics of fuzzy sets, membership functions, support of a fuzzy set height, normalized fuzzy set,			
operations, projection, max-min, min-max composition, cylindrical extension.3FIRST INTERNAL EXAMIIIReflexivity, symmetry and transitivity of fuzzy relations. Fuzzy prepositions, fuzzy connectives, linguistic variables, hedges.4IIIApproximate reasoning or fuzzy inference, Fuzzy rule based system. Fuzzification and defuzzification using centroid, centre of sums.4IVIntroduction to Neural Networks - Applications -Biological neuron- Typical architecture of Artificial Neural Networks - Supervised and Unsupervised learning4IVSECOND INTERNAL EXAM15VBack propagation network and its architecture, Back propagation learning, back propagation algorithm2VIGenetic Algorithm Basic concepts, Initialization and selection, Survival of the Fittest - Fitness Computations.520			4		
IIIReflexivity, symmetry and transitivity of fuzzy relations. Fuzzy prepositions, fuzzy connectives, linguistic variables, hedges.4IIIApproximate reasoning or fuzzy inference, Fuzzy rule based system. Fuzzification and defuzzification using centroid, centre of sums.415INIntroduction to Neural Networks - Applications -Biological neuron- Typical architecture of Artificial Neural Networks - Common activation function.415INCommon activation function.415McCulloh Pitts Neuron - Architecture, logic implementatons. Supervised and Unsupervised learning415VEcond Internal Exam220VBack propagation network and its architecture, Back propagation learning, back propagation algorithm420VIGenetic Algorithm Basic concepts, Initialization and selection, Survival of the Fittest - Fitness Computations.520	II	operations, projection, max-min, min-max composition,	3	15	
IIIprepositions, fuzzy connectives, linguistic variables, hedges.4Approximate reasoning or fuzzy inference, Fuzzy rule based system. Fuzzification and defuzzification using centroid, centre of sums.415INIntroduction to Neural Networks - Applications -Biological neuron- Typical architecture of Artificial Neural Networks - Common activation function.415INCMcCulloh Pitts Neuron - Architecture, logic implementatons. Supervised and Unsupervised learning415VEcond Internal Network and its architecture, Back propagation learning, back propagation algorithm220VIGenetic Algorithm Basic concepts, Initialization and selection, Survival of the Fittest - Fitness Computations.520		FIRST INTERNAL EXAM			
InterpretationInterp			4		
IVneuron- Typical architecture of Artificial Neural Networks - Common activation function.415McCulloh Pitts Neuron - Architecture, logic implementatons. Supervised and Unsupervised learning415SECOND INTERNAL EXAMVLinear Separability, Pattern Classification: Perceptrons2VBack propagation network and its architecture, Back propagation learning, back propagation algorithm420VIGenetic Algorithm Basic concepts, Initialization and selection, Survival of the Fittest - Fitness Computations.520	III	system. Fuzzification and defuzzification using centroid, centre	4	15	
Supervised and Unsupervised learning 4 SECOND INTERNAL EXAM V Linear Separability, Pattern Classification: Perceptrons 2 V Back propagation network and its architecture, Back propagation learning, back propagation algorithm 4 VI Genetic Algorithm Basic concepts, Initialization and selection, Survival of the Fittest - Fitness Computations. 5 20	IV	neuron- Typical architecture of Artificial Neural Networks -	4	15	
VLinear Separability, Pattern Classification: Perceptrons2VBack propagation network and its architecture, Back propagation learning, back propagation algorithm4VIGenetic Algorithm Basic concepts, Initialization and selection, Survival of the Fittest - Fitness Computations.520		• •	4		
VBack propagation network and its architecture, Back propagation learning, back propagation algorithm20VIGenetic Algorithm Basic concepts, Initialization and selection, Survival of the Fittest - Fitness Computations.520		SECOND INTERNAL EXAM			
propagation learning, back propagation algorithm4Genetic Algorithm Basic concepts, Initialization and selection, Survival of the Fittest - Fitness Computations.520			2		
VISurvival of the Fittest - Fitness Computations.520	V		4	20	
Operators - Cross over, Mutation. 3	VI	Survival of the Fittest - Fitness Computations.	5	20	
		Operators - Cross over, Mutation.	3		

Question Paper (End semester exam)

Max. Marks: 100

Time : 3 hours

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 50 % for theory, derivation, proof and 50% for logical/numerical problems.

COURS CODE	E COURSE NAME	L-T-P-C	INT	YEAR (RODUC	
EC361	Digital System Design	3-0-0-3		2016	
Prerequisi	e: EC207 Logic Circuit Design	ľ			
Course obj 1. To s 2. To s 3. To s 4. To s 1. To s Syllabus: Clocked sy CPLDs and Expected of The student 1. To s	ectives: tudy synthesis and design of CSSN tudy synthesis and design of ASC tudy hazards and design hazard free circ tudy PLA folding tudy architecture of one CPLDs and FPGA nchronous networks, asynchronous sequ FPGA utcome: will be able: nalyze and design clocked synchronous se	A family ential circuits, equential circuits		ds, Fault	s, PLA,
3. To a	nalyze and design asynchronous sequentian pply their knowledge in diagnosing faults	in digital circui	ts, PLA	A	
	nterpret architecture of CPLDs and FPGA				
2. John F	G Givone, Digital Principles & Design, T Wakerly, Digital Design, Pearson Education Yarbrough, Digital Logic Applications and	on, Delhi 2002			
and Tes 2. Morris 3. N. N. B 4. Richard FPGA I 5. Samuel	Abramovici, Melvin A. Breuer and Arthur table Design, John Wiley & Sons Inc. Mano, M.D.Ciletti, Digital Design, 5 th Edi iswas, Logic Design Theory, PHI E. Haskell, Darrin M. Hanna, Introduc Boards, LBE Books- LLC C. Lee, Digital Circuits and Logic Design vi, Switching and Finite Automata Theory	tion, PHI. ction to Digital , PHI	Desig		
Course Pla		, 2 Cu., 2001,	1 10111		
Module	Course content			Hours	End Sem. Exam Marks
	Analysis of clocked Synchronous Sequenti	al Networks(CS	SN)	2	
I	Modelling of CSSN – State assignment and			1	
	Design of CSSN			2	15
	terative circuits			1	
	ASM Chart and its realization			2	
	Analysis of Asynchronous Sequential Circ	uits (ASC)		2	
	Flow table reduction- Races in ASC			1	
II ;	State assignment problem and the transitio	n table- Design	of	2	15
	Design of Vending Machine controller.			2	

	FIRST INTERNAL EXAM			
	Hazards – static and dynamic hazards – essential	1		
	Design of Hazard free circuits – Data synchronizers	1		
III	Mixed operating mode asynchronous circuits	1	15	
	Practical issues- clock skew and jitter	1		
	Synchronous and asynchronous inputs – switch bouncing	2		
	Fault table method – path sensitization method – Boolean difference method	2		
IV	Kohavi algorithm	2	15	
	Automatic test pattern generation – Built in Self Test(BIST)	3		
	SECOND INTERNAL EXAM			
	PLA Minimization - PLA folding	2		
v	Foldable compatibility Matrix- Practical PLA	2	20	
v	Fault model in PLA	1	20	
	Test generation and Testable PLA Design.	3		
	CPLDs and FPGAs - Xilinx XC 9500 CPLD family, functional	3		
VI	block diagram- input output block architecture - switch matrix	5	20	
VI	FPGAs – Xilinx XC 4000 FPGA family – configurable logic block - input output block, Programmable interconnect	3		
	END SEMESTER EXAM			

Question Paper Pattern (End semester exam)

Max. Marks: 100

Time : 3 hours

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 50 % for theory, derivation, proof and 50% for logical/numerical problems.

	COURSE CODE	COURSE NAME	L-T-P-C	YEAR OF INTRODUCTION
Du	EC363 erequisite: N	Optimization Techniques	3-0-0-3	2016
	1			
	urse objectiv		(
1. 2.		nd the need and origin of the optimiza road picture of the various application		ation mathada used in
۷.	engineering.		ions of optimizations	anon memous used m
3	0 0	ptimization problem and its various co	mponents	
		neering applications of optimization		of design problems as
•	0	programming problems, objective f		0 1
	1	oblems/techniques, necessary and su		
-	-	exity, Mathematical formulation of LI		1 0
sta	ndard form.	Feasible solutions, Graphical solu	ition methods,	optimality conditions,
		nplex algorithm, Duality in linear p	• •	-
	-	etwork path models, Nonlinear uncon	-	
of	optimization,	Genetic algorithm. Introduction to op	ptimization tools	and software.
F	pected outco			
СX	-	s will (i) have a thorough understandi	ng of optimization	on techniques
	The students	(ii) be able to formulate and solving		-
Те	xt Books:			procession procession
		" Operations Research", 5/e, Macmilla	an Publishing Co	ompany, 1992.
2.		Deb. "Optimization for Engineering	-	
	Prentice-Ha	ll of India Pvt. Ltd., New Delhi		•
3.	Singiresu S	S Rao, "Engineering optimization	Theory and	Practice", New Age
	Internationa	1, 2009		
	ferences:			
1.	A. Ravindra	n, D. T. Phillips, J. J. Solberg, Operati	ions Research –	Principles and
		nn Wiley and Sons.		
2.	Ashok D Be	elegundu, Tirupathi R Chandrupatla, "	Optimization con	ncepts and Application
	in Engineeri	ng", Pearson Education.		
3.	Hadley, G. '	'Linear programming", Narosa Publisl	hing House, Nev	v Delhi
4.	J. S. Arora,	Introduction to Optimum Design, McO	Graw-Hill Book	Company.
5.	Kanti Swaru	p, P.K.Gupta and Man Mohan, Oper	rations Research	, Sultan Chand and
	Sons			
	Donib			

	Course Plan		
Module	Course content	Hours	End Sem. Exam Marks
	Introduction: Engineering applications of optimization, Formulation of design problems as mathematical programming problems, objective function, constraints, classification of optimization problems/techniques.	2	15
Ι	Optimization techniques: Classical optimization, unconstrained single and multivariable minimization- necessary and sufficient conditions for optimality, uni-modality, convexity.	5	15
II	Linear programming problems-I: Mathematical formulation of LP Problems, slack, surplus and artificial variables. Reduction of a LPP to the standard form, feasible solutions. Graphical solution method, simplex algorithm and solution using tabular method, optimality conditions and degeneracy. Duality in linear programming	7	15
	FIRST INTERNAL EXAM		
ш	Transportation Problem: Formulation of transportation problem, Basic feasible solution using different methods- East West corner method, Vogel approximation method, Optimality methods, MODI method, Unbalanced transportation problem	7	15
IV	Game Theory: Introduction, 2- person zero – sum game; Saddle point; Mini-Max and Maxi-Min Theorems (statement only); Graphical solution (2x n, m x 2 game), dominance property. Network path Models: Tree Networks – Minimal Spanning Tree - Prim's Algorithm. Shortest path problems- solution methods – Dijkstra's Method.	7	15
	SECOND INTERNAL EXAM		
V	Nonlinear unconstrained optimization: Single variable optimization methods- Fibonacci search method, Newton- Raphson method. Multi-variable methods- Hook-Jeeves pattern search method, Cauchy's (steepest descent) method.	7	20
VI	Modern methods of optimization: Introduction to Genetic algorithm, Cross over, Mutation, Reproduction, Simple examples of applications in electronics engineering	5	20
V A	Introduction to optimization tools and softwares. Solution of optimization Problems using MATLAB.	2	0
	END SEMESTER EXAM		

KTUQBANK.COM

Question Paper Pattern (End sem. Exam.)

Max. Marks: 100

Time: 3 hours

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 30 % for theory and 70% for logical/numerical problems, derivation and proof.

COURSI	E				YEAR (
CODE	-+	COURSE NAME	L-T-P-C	INT	RODUC	CTION
EC365	10- NT	Biomedical Engineering	3-0-0-3		2016	
Prerequisit						
Course obj			~ ** = = = = = = = = = = = = = = = = = =			
		student to basic biomedical engineering the anatomy & physiology of major s		hody i	n design	ina
		or medical treatments.	systems of the	bouyi	n uesign	ing
1 1		nowledge about the principle and working	ng of different	types	of bio-m	edical
		uipment/devices.		C) P CS	01 010 11	curcur
Syllabus:						
•	dy-ov	verview, Physiological systems of bo	ody, Measurer	nent	of physi	ological
		isting and therapeutic devices, Medical				
patient care	, Pati	ient safety, Medical imaging system				
Expected o						
The student						
		nd diagnosis and therapy related equipm			1.	
		nd the problem and identify the neces	sity of equipn	nent f	or diagno	osis and
therapy. 3. To unde		nd the importance of electronics enginee	ring in modice	1 field	I	
		ad the importance of telemetry in patien	U U		l .	
Text Books		the the importance of telementy in patient				
		r, "Hand book of Biomedical instrumen	tation". Tata N	IcGra [*]	w Hill 2r	nd e/d.
	-	well, Fred J. Weibell, Erich A. Pfeif				
		ts, PHI, 2nd Edition, 2004	,			
References	::					
		riste, Introduction to Biomedical Inst	rumentation,	Camb	ridge Uı	niversity
Press, 2			1 1 1 1 5			. th
	rr, "Ir	ntroduction to Biomedical Equipment T	echnology", Pe	earson	Education	on 4 th
e/d.	Wah	stan "Madical Instrumentation annlight	an and design?	" Tala	Wilco	rd d
		ster, "Medical Instrumentation application, "Principle of Biomedical Instrume	-		-	
		rentice Hall.		vicasu	rement .	WICIIIII
Course Pla						
Module		Course content				End
Wiodule		course content				Sem.
					Hours	Exam
						Marks
	Intro	duction to bio-medical instrumentation	system, over	view	1	
(of ana	atomy and physiological systems of the	body.		1	
		ces of bio-electric potential: Resting an				
		ngation of action potentials. Bioe			2	
		ples (ECG, EEG, EMG, ERG,	EOG, EGG,	etc	_	15
1		duction only.)				
		rode theory: Nernst relation	-1-1-	uf -	1	
		potential electrodes: Microelectrod	ies, skin su	rface	1	
e	electr	odes, needle electrodes.				

Heart and cardiovascular system (brief discussion), electro conduction system of the heart. Electrocardiography, ECG machine block diagram, ECG lead configurations, ECG	
recording system, Einthoven triangle, analysis of ECG signals.	
II Measurement of blood pressure: Direct, indirect and relative methods of blood pressure measurement, auscultatory method, oscillometric and ultrasonic non-invasive pressure measurements.	15
Measurement of blood flow: Electromagnetic blood flow 2	
FIRST INTERNAL EXAM	
The human nervous system. Neuron, action potential of brain, brain waves, types of electrodes, placement of electrodes, evoked potential, EEG recording, analysis of EEG.2	
Electromyography: Nerve conduction velocity, instrumentation system for EMG.	15
III Physiology of respiratory system (brief discussion), Respiratory parameters, spirometer, body plethysmographs, gas exchange 2 and distribution.	15
Instruments for clinical laboratory: Oxymeters, pH meter, blood cell counter, flame photometer, spectrophotometer 3	
IV Therapeutic Equipments: Principle, block schematic diagram, working and applications of : pacemakers, cardiac defibrillators, heart–lung machine, dialyzers, surgical diathermy equipment, ventilators	15
SECOND INTERNAL EXAM	
Medical Imaging systems (Basic Principle only): X-ray imaging - Properties and production of X-rays, X-ray machine, applications of X-rays in medicine.	
VComputed Tomograpy: scanning system and applications.Principle, image reconstruction, 2	20
Ultrasonic imaging systems: Basic pulse echo system, propagation of ultrasonic through tissues and reflections, display types, A-Scan, B-Scan, M-Scan, applications, real- time ultrasonic imaging systems and probes.	
Magnetic Resonance Imaging – Basic NMR components, Biological effects and advantages of NMR imaging3	
VIBiomedical Telemetry system: Components of biotelemetry system, application of telemetry in medicine, single channel telemetry system for ECG and temperature2	20
Patient Safety: Electric shock hazards, leakage current, safety codes for electro medical equipments	
END SEMESTER EXAM	

Question Paper Pattern (End Sem. Exam)

Maximum Marks: 100

Time : 3 hours

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 100 % for theory.

COURSI CODE	E COURSE NAME	L-T-P-C	YEAR OF INTRODUCTION			
EC302Digital Communication4-0-0-42016Prerequisite: EC204 Signals and Systems, EC208 Analog Communication						
-			cation			
Course Ob			1			
	• To understand the concept of Digital	-	•			
	• To understand the Performance comp schemes	1				
	• To discuss Inter Symbol Interference and to derive the Nyquist Criteria for	· · ·	0			
	• To analyse the need for introducing IS	I in controlled m	anner			
	 To understand signal space representa orthonormalisation procedure 	tion of signal usi	ng Gram Schmidt			
	 To analyse the error probability for d BFSK, QPSK etc. 	fferent modulation	on schemes like BPSK,			
·	• To understand the principle of spread illustrate the concept of FHSS and DS	1	inication and to			
	• To understand various Multiple Acces					
~	Overview of Random variables and					
Matched fil schemes, D	of digital communication, Digital Pulse ter receiver, Review of Gaussian random petection of signals in Gaussian noise, H ation, Spread spectrum communication,	process, Digita seudo–noise seq	uences, Importance of			
Techniques		Diversity teenin	ques, multiple necess			
Expected (
-	ts will be able to					
	Illustrate the Digital representation of ana	log source				
	Compare the performance of various Dig	-	tion Schemes			
iii.	Apply the knowledge of ISI problems in I Nyquist criteria for zero ISI					
iv.	Analyse the need for introducing ISI in D manner	igital Communic	ation in a controlled			
v.	Construct signal space representation of s orthonormalisation procedure	ignal using Gram	n Schmidt			
vi.	Compare the error probability for diff BPSK, BFSK, QPSK etc.	erent digital mo	dulation schemes like			
vii.	Describe the principle of spread spectrum concept of FHSS and DSSS	communication	and to illustrate the			
	Understand various Diversity Techniques					
Text Books						
	. Proakis, Masoud Salehi, Digital Con	nmunication, M	cGraw Hill Educatior			
Edition,		,				
	h N, Digital Communication, Cengage La	arning India , 20	17			
	ishna Rao, Digital communication, Tata	-				

- Ramakrishna Rao, Digital communication, Tata McGraw Hill Education Pvt. Limited.
 Simon Haykin, Communication Systems, 4/e Wiley India, 2012.

References:

- 1. Couch: Analog and Digital Communication. 8e, Pearson Education India, 2013.
- 2. H.Taub and Schilling Principles of Communication Systems, , TMH, 2007
- 3. K.Sam Shanmugham, Digital and Analog Communication Systems, John Wiley & Sons
- 4. Pierre Lafrance ,Fundamental Concepts in Communication, Prentice Hall India.
- 5. Sheldon.M.Ross, "Introduction to Probability Models", Academic Press, 7th edition.
- 6. Sklar: Digital Communication, 2E, Pearson Education.
- 7. T L Singal, Digital Communication, McGraw Hill Education (India) Pvt Ltd, 2015

	Course Plan		
Module	Course content	Hours	End Sem. Exam Marks
	Overview of Random variables and Random process: Random variables–continuous and Discrete, random process- Stationarity, Autocorrelation and power spectral density, Transmission of Random Process through LTI systems, PSD, AWGN	3	
I	Pulse Code Modulation (PCM): Pulse Modulation, Sampling process, Performance comparison of various sampling techniques Aliasing, Reconstruction, PAM, Quantization, Noise in PCM system	3	15
	Modifications of PCM : Delta modulation, DPCM, ADPCM, ADM, Performance comparison of various pulse modulation schemes, Line codes, PSD of various Line codes	4	
	Transmission over baseband channel: Matched filter, Inter Symbol Interference (ISI), Nyquist Criteria for zero ISI, Ideal solution, Raised cosine spectrum, Eye Pattern	4	15
II	Correlative Level Coding - Duobinary coding, precoding, Modified duobinary coding, Generalized Partial response signalling.	3	15
	FIRST INTERNAL EXAM		
	Signal Space Analysis: Geometric representation of signals, Gram Schmidt orthogonization procedure.	3	
III	Transmission Over AWGN Channel : Conversion of the continuous AWGN channel into a vector channel, Likelihood function, Maximum Likelihood Decoding, Correlation Receiver	4	15
IV	Digital Modulation Schemes: Pass band transmission model, Coherent Modulation Schemes- BPSK, QPSK, BFSK. Non- Coherent orthogonal modulation schemes, Differential Phase Shift Keying (DPSK)	4	15
	Detection of Binary modulation schemes in the presence of noise, BER for BPSK, QPSK, BFSK	5	
	SECOND INTERNAL EXAM		
V	Pseudo–noise sequences : Properties of PN sequences. Generation of PN Sequences, generator polynomials, Maximal length codes and Gold Codes.	3	20

	Importance of synchronization : Carrier, frame and symbol/chip synchronization techniques.	2	
	Spread spectrum communication: Direct sequence spread spectrum with coherent binary phase shift keying, Processing gain, Probability of error, Anti-jam Characteristics, Frequency Hop spread spectrum with MFSK, Slow and Fast frequency hopping.	4	
	Multipath channels: classification, Coherence time, Coherence bandwidth, Statistical characterization of multi path channels, Binary signalling over a Rayleigh fading channel.	3	
VI	Diversity techniques : Diversity in time, frequency and space.	2	20
	Multiple Access Techniques : TDMA, FDMA, CDMA and SDMA – RAKE receiver, Introduction to Multicarrier communication- OFDM	5	
	END SEMESTER EXAM		

Question Paper Pattern (End Semester Exam)

Maximum Marks : 100

Time : 3 hours

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 30% for theory and 70% for logical/numerical problems, derivation and proof.

COURS		COURSE NAME	L-T-P-C		YEAR (RODUC	
EC304		VLSI	3-0-0-3	1111	2016	
		C203 Solid State Devices, EC204 Analo		ircuit		
Course of			8 8		-	
		the knowledge about IC Fabrication Tech	hniques			
	-	rt the skill of analysis and design of MO	-	OS lo	gic circu	its.
Syllabus:						
		Technology, CMOS IC Fabrication Sequ				-
		Design, Dynamic CMOS circuits, Pa				
		Memory, Sense amplifiers, Adders, mu	Itipliers, Testin	ng of	VLSI circ	cuits.
Expected		me: Il be able to design and analyse various	MOSEET and	CMC	S logic o	ircuite
Text Bool		in be able to design and analyse various		CIVIC	is logic c	incuits.
		mura, Introduction to VLSI Circuits and	Systems, Wile	ev Ind	ia. 2006	
	•	LSI Technology, 2/e, Indian Edition, M	•	•	14, 2000	
Reference			,			
1. Jan M	Raba	ey, Digital Integrated Circuits- A Desig	n Perspective,	Prent	ice Hall,	Second
Edition	,					
		Veste, Kamran Eshraghian, Principles of		SI De	sign- A	Systems
1		Second Edition. Pearson Publication, 20				T 1'
		sign of Analog CMOS Integrated Circui	ts, Ie, McGrav	N H1L	Educati	on India
	,	lew Delhi, 2003. Kang & Yusuf Leblebici, CMOS Digi	ital Integrated	Circ	uite Ane	Jucie &
-		Graw-Hill, Third Ed., 2003.	ital integrated	CIIC		ilysis &
		& Ning, Fundamentals of Modern VI	LSI Devices, (Camb	ridge Ur	niversity
Press,		6,				
		Course Plan				
Module		Course content				End
					Hours	Sem.
					nours	Exam
	N/L 4	wiel Dromenetter Destition of the	1	a 1		Marks
		erial Preparation- Purification, Crysta rocess), wafer preparation	i growth (CZ	and		
	-	mal Oxidation- Growth mechanism	s Dry and	Wet	4	
		ation, Deal Grove model.	is, Dry and	wet		15
Ι		ision- Fick's Laws, Diffusion with const	ant surface			10
		entration and from a constant source, dif		ues.	3	
	Ion i	mplantation-Technique, Range Theory,	annealing.			
		axy: Vapour phase epitaxy and molecul				
		ography- Photo lithographic sequence	e, Electron B	eam	4	
II		graphy, Etching and metal deposition				15
		nods of isolation Circuit component fa			2	
		istor, diodes, resistors, capacitors, N-wel	II CMOS IC		3	
	Fabri	cation Sequence	V A N/I			
	CNA	FIRST INTERNAL EX		tica		
III		DS inverters - DC characteristics, switch or dissipation	ing characteris	ucs,	4	15
	powe	n uissipauon				

	Layout Design rules , Stick Diagram and layout of CMOS Inverter, two input NAND and NOR gates	4	
IV	MOSFET Logic Design -Pass transistor logic, Complementary pass transistor logic and transmission gate logic, realization of functions		15
	SECOND INTERNAL EXAM		
V	ReadOnlyMemory-4x4MOSROMCellArrays(OR,NOR,NAND)Random Access Memory –SRAM-Six transistor CMOSSRAM cell,DRAM –Three transistor and One transistorDynamic Memory CellSense amplifiers –Differential Voltage Sensing Amplifiers	4	20
	Introduction to PLDs and FPGAs, Design of PLAs.	5	
VI	Adders- Static adder, Carry-By pass adder, Linear Carry- Select adder, Square- root carry- select adderMultipliers-Array multiplier	4	20
	END SEMESTER EXAM		

Question Paper Pattern (End Semester Exam)

Maximum Marks : 100

Time : 3 hours

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 70% for theory and 30% for logical/numerical problems, derivation and proof.

COURSE CODE	COURSE NAME	L-T-P-C	YEAR OF INTRODUCTION
EC306	Antenna & Wave Propagation	3-0-0-3	2016
	CC303 Applied Electromagnetic Theory		-010
Course objecti			
•	the basic working of antennas.		
	y various antennas, arrays and radiation pa	atterns of ante	ennas.
•	rstand various techniques involved in vari		
measure	-		
• To unde	rstand the propagation of radio waves in t	the atmospher	re.
Syllabus:		1	
Antenna and an	ntenna parameters, Duality of antennas, I	Derivation of	electromagnetic fields
	of short dipole and half wave dipole, M		
	and design of Endfire, broadside, bine		
	ractical antennas. Traveling wave antenn		
	ntennas Principles of Horn, Parabolic dis		
	intenna array and Helical antenna. Desi		
-	nart antenna, Radio wave propagation,	Different me	odes, effect of earth's
Expected outco	Fading and diversity techniques.		
1	l be able to know:		
	basic working of antennas.		
	ous antennas, arrays and radiation pattern	s of antennas	
	ous techniques involved in various antenr		
	propagation of radio waves in the atmosp	-	
Text Books:			
1. Balanis,	Antenna Theory and Design, 3/e, Wiley I	Publications.	
2. John D.	Krauss, Antennas for all Applications, 3/4	e, TMH.	
References:			
	R.E, Antennas & Radio Wave Propagation		
	E.C. & K. G. Balmain, Electromagnetic W	vaves & Radi	ating Systems, 2/e,
PHI.		2012	
5	S.N., Antenna and Wave Propagation, Pea	,	M.C
	Das & Annapurna Das, Antenna and Wav, Electronics & Radio Engineering, 4/e, M		n, McGraw Hill,2012
	A. Milligan, Modern Antenna Desigr		ESS 2/e Wiley Inter
science.		I, ILLL I KI	Loo, 2/c, whey inter

-	Course Plan		
Module	Course content	Hours	End Sem. Exam Marks
I	Basic antenna parameters - gain, directivity, beam solid angle, beam width and effective aperture calculations. Effective height - wave polarization - antenna temperature - radiation resistance - radiation efficiency - antenna field zones - principles of reciprocity. Duality of antennas.	7	15
II	Concept of retarded potential. Field, directivity and radiation resistance of a short dipole and half wave dipole. Measurement of radiation pattern, gain, directivity and impedance of antenna	7	15
	FIRST INTERNAL EXAM		I
III	Arrays of point sources - field of two isotropic point sources - principle of pattern multiplication - linear arrays of 'n' isotropic point sources. Grating lobes.	4	15
	Design of Broadside, Endfire & Binomial arrays. Design of DolphChebyshev arrays.	4	
IV	Basic principle of beam steering. Travelling wave antennas. Principle and applications of V and rhombic antennas. Principles of Horn, Parabolic dish antenna, Cassegrain antenna (expression for E, H andGain without derivation).	6	15
	SECOND INTERNAL EXAM		L
V	Principle of Log periodic antenna array and Helical antenna. Antennas for mobile base station and handsets.	3	20
•	Design of rectangular Patch antennas. Principle of smart antenna.	3	20
VI	Radio wave propagation, Modes, structure of atmosphere, sky wave propagation, effect of earth's magnetic field, Ionospheric abnormalities and absorption, space wave propagation, LOS distance	4	20
	Field strength of space wave, duct propagation, VHF and UHF Mobile radio propagation, tropospheric scatter propagation, fading and diversity techniques.	4	
	END SEMESTER EXAM		

Question Paper Pattern (End semester exam)

Max. Marks: 100

Time : 3 hours

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 50% for theory and 50% for logical/numerical problems, derivation and proof.

COURSE			YEAR OF
CODE	COURSE NAME	L-T-P-C	INTRODUCTION
EC308	Embedded Systems	3-0-0-3	2016
	CC206 Computer Organization, EC305 N		
Course objecti	1 0	1	
v	thorough understanding of the basic st	tructure and d	esign of an Embedded
System			
	he different ways of communicating	with I/O dev	ices and standard I/O
interfaces.	, c		
• To study the	e basics of RTOS for Embedded systems	S.	
• To study the	e programming concepts of Embedded S	Systems	
• To study the	e architecture of System-on-Chip and so	me design exa	mples.
Syllabus: Intro	duction to Embedded Systems, Embedd	ded system des	ign process, Serial and
-	unication standards and devices, Me	•	
Programming c	oncepts of embedded programming -	Embedded C+	+ and embedded java,
-	rating Systems Micro C/OS-II.		
Expected outco			
The students wi			
	erstand the basics of an embedded syste	m	
	elop program for an embedded system.		
	gn, implement and test an embedded sys	stem.	
Text Books:	mon An Emboddod Software Drimon	Deerson Educ	tion Asia First Indian
Reprint 200	mon, An Embedded Software Primer,	Pearson Educa	ation Asia, First mutan
1	o. If, Computers as Components: Principl	les of Embedd	ed Computing System
•	rgan Kaufman Publishers - Elsevier 3e		ied Computing System
References:		u , 2 000	
	d and Tony Givargis, Embedded Syste	ems Design –	A Unified Hardware /
	troduction, John Wiley, 2002	8	
	dded Real time Systems, 1e, McGraw H	Iill Education I	New Delhi, 2003
3. K.V. Shibu,	Introduction to Embedded Systems, 2e,	, McGraw Hill	Education India, 2016.
	, Embedded Systems: An Integrated Ap		
•	Embedded Systems Architecture, Program	mming and De	sign, TMH, 2003
•	, Embedded Systems Design, Newnes –	-	-
	bergaard, Embedded Systems Archite		
	nd Programmers, Newnes – Elsevier 2ed		1

	Course Plan		
Module	Course content	Hours	End Sem. Exam Marks
I	Introduction to Embedded Systems– Components of embedded system hardware–Software embedded into the system – Embedded Processors - CPU architecture of ARM processor (ARM9) – CPU Bus Organization and Protocol. Design and Development life cycle model - Embedded system	4	15
	design process – Challenges in Embedded system design Serial Communication Standards and Devices - UART, HDLC, SCI and SPI.	3	
II	Serial Bus Protocols - I2C Bus, CAN Bus and USB Bus. Parallel communication standards ISA, PCI and PCI-X Bus.	3	15
	FIRST INTERNAL EXAM		
III	Memory devices and systems - memory map – DMA - I/O Devices – Interrupts - ISR – Device drivers for handling ISR – Memory Device Drivers – Device Drivers for on-board bus.	6	15
IV	Programming concepts of Embedded programming – Features of Embedded C++ and Embedded Java (basics only). Software Implementation, Testing, Validation and debugging, system-on- chip.	6	15
	Design Examples: Mobile phones, ATM machine, Set top box	1	0
	SECOND INTERNAL EXAM		
V	Inter Process Communication and Synchronization -Process, tasks and threads –Shared data– Inter process communication - Signals – Semaphore – Message Queues – Mailboxes – Pipes – Sockets – Remote Procedure Calls (RPCs).	8	20
VI	Real time operating systems - Services- Goals – Structures - Kernel - Process Management – Memory Management – Device Management – File System Organization. Micro C/OS-II RTOS - System Level Functions – Task Service Functions – Memory Allocation Related Functions – Semaphore Related Functions. Study of other popular Real Time Operating Systems.	8	20
	END SEMESTER EXAM		

Question Paper Pattern (End semester exam)

Maximum Marks : 100

Time : 3 hours

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 100 % for theory.

COURSE CODE YEAR OF INTRODUCTION EC312 Object Oriented Programming 3-0-0-3 2016 Prerequisite: NIL Course objectives: 2016 On introduce the Object Oriented Programming paradigm using C++ and Java as the languages. 2016 O introduce the Object Oriented Programming paradigm using C++ and Java as the languages. Solution Object Oriented Programming and basics of C++, Advanced features of C++ programming such as exception handling and templates. Object oriented features of Java and their implementation. Advanced features of Java including packages, multithreading and error management. Introduction to Android application development with a case study. Expected outcome: The students will have: A thorough understanding of the features of OOP like class construction, polymorphism and inheritance of C++ and Java. An understanding of advanced features of C++ such as templates, abstract classes and virtual functions. Knowledge of advanced features of Java such as multithreading, packages and error management. Skills in debugging, deploying and testing mobile applications. Test Books: E. Balagurusamy, Object Oriented Programming: The Big Nerd Ranch Guide. Addison-Wesley Professional, 2013. Yashwant P. Kanetkar, Let us C++, 2/e, BPB Publications, 2003 References: Deitel, Harvey M., and Paul J. Deitel., Java how to program.,7th International edition." (2007): 390-420.				
EC312 Object Oriented Programming 3-0-0-3 2016 Prerequisite: NIL Course objectives: • To introduce the Object Oriented Programming paradigm using C++ and Java as the languages. • To learn simple Android application development from the fundamentals. Syllabus: Object Oriented Programming and basics of C++, Advanced features of C++ programming such as exception handling and templates. Object oriented features of Java and their implementation. Advanced features of Java including packages, multithreading and error management. Introduction to Android application development with a case study. Expected outcome: The students will have: i. A thorough understanding of the features of OOP like class construction, polymorphism and inheritance of C++ and Java. ii. An understanding of advanced features of Java such as templates, abstract classes and virtual functions. iii. Knowledge of advanced features of Java such as multithreading, packages and error management. v. Skills in debugging, deploying and testing mobile applications. Text Books: E. Balagurus, Object Oriented Programming with C++ and JAVA, McGrawHill, 2015 Hardy, Brian, and Bill Phillips, Android Programming: The Big Nerd Ranch Guide. Addison-Wesley Professional, 2013. Yashwatt P. Kanetkar, Let us C++, 2/e, BPB Publications, 2003 References: Deitel, Harvey M., and Paul J. Deitel., Java how to program., 7th International edition." (2007): 390-420.				
 Prerequisite: NIL Course objectives: To introduce the Object Oriented Programming paradigm using C++ and Java as the languages. To learn simple Android application development from the fundamentals. Syllabus: Object Oriented Programming and basics of C++, Advanced features of C++ programming such as exception handling and templates. Object oriented features of Java and their implementation. Advanced features of Java including packages, multithreading and error management. Introduction to Android application development with a case study. Expected outcome: The students will have: A thorough understanding of the features of OOP like class construction, polymorphism and inheritance of C++ and Java. An understanding of advanced features of Java as multithreading, packages and error management. Knowledge of advanced features of Java such as multithreading, packages and error management. Skills in designing android application development. Skills in debugging, deploying and testing mobile applications. Text Books: Ealagurusamy, Object Oriented Programming with C++ and JAVA, McGrawHill, 2015 Hardy, Brian, and Bill Phillips, Android Programming: The Big Nerd Ranch Guide. Addison-Wesley Professional, 2013. Yashwant P. Kanetkar, Let us C++, 2/e, BPB Publications, 2003 References: Deitel, Harvey M., and Paul J. Deitel., Java how to program.,7th International edition." (2007): 390-420. G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design with Applications, Addison-Wesley, 3rd Edition, 2007. Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. Kernann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. Stroustrup, Bjarne. The C++ progr	CODE	COURSE NAME	L-T-P-C	INTRODUCTION
 Course objectives: To introduce the Object Oriented Programming paradigm using C++ and Java as the languages. To learn simple Android application development from the fundamentals. Syllabus: Object Oriented Programming and basics of C++, Advanced features of C++ programming such as exception handling and templates. Object oriented features of Java and their implementation. Advanced features of Java including packages, multithreading and error management. Introduction to Android application development with a case study. Expected outcome: The students will have: A thorough understanding of the features of OOP like class construction, polymorphism and inheritance of C++ and Java. A thorough understanding of the features of COP like class construction, polymorphism and inheritance of C++ and Java. Knowledge of advanced features of Java such as multithreading, packages and error management. V. Skills in designing android application development. V. Skills in debugging, deploying and testing mobile applications. Text Books: E Balagurusamy, Object Oriented Programming: The Big Nerd Ranch Guide. Addison-Wesley Professional, 2013. Yashwant P. Kanetkar, Let us C++, 2/e, BPB Publications, 2003 References: Deitel, Harvey M., and Paul J. Deitel., Java how to program.,7th International edition." (2007): 390-420. G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design with Applications, Addison-Wesley, 3rd Edition, 2007. Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. Stroustrup, Bjarne. The C++ programming with C++ and Java, PHI Learning Pvt. Ltd., 2006. 		3 0 0	3-0-0-3	2016
 To introduce the Object Oriented Programming paradigm using C++ and Java as the languages. To learn simple Android application development from the fundamentals. Syllabus: Object Oriented Programming and basics of C++, Advanced features of C++ programming such as exception handling and templates. Object oriented features of Java and their implementation. Advanced features of Java including packages, multithreading and error management. Introduction to Android application development with a case study. Expected outcome: The students will have: A thorough understanding of the features of OOP like class construction, polymorphism and inheritance of C++ and Java. A nuderstanding of advanced features of C++ such as templates, abstract classes and virtual functions. Knowledge of advanced features of Java such as multithreading, packages and error management. Skills in designing android application development. Skills in debugging, deploying and testing mobile applications. Text Books: Balagurusamy, Object Oriented Programming: The Big Nerd Ranch Guide. Addison-Wesley Professional, 2013. Yashwant P. Kanetkar, Let us C++, 2/e, BPB Publications, 2003 References: Deitel, Harvey M., and Paul J. Deitel., Java how to program.,7th International edition." (2007): 390-420. G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design with Applications, Addison-Wesley, 3rd Edition, 2007. Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. Samanta, Debasis, Object-Oriented programming with C++ and Java, PHI Learning Pvt. Ltd., 2006. <!--</th--><th>-</th><th></th><th></th><th></th>	-			
 languages. To learn simple Android application development from the fundamentals. Syllabus: Object Oriented Programming and basics of C++, Advanced features of C++ programming such as exception handling and templates. Object oriented features of Java and their implementation. Advanced features of Java including packages, multithreading and error management. Introduction to Android application development with a case study. Expected outcome: Tthe students will have: A thorough understanding of the features of OOP like class construction, polymorphism and inheritance of C++ and Java. An understanding of advanced features of C++ such as templates, abstract classes and virtual functions. Knowledge of advanced features of Java such as multithreading, packages and error management. Skills in designing android application development. Skills in debugging, deploying and testing mobile applications. Text Books: E. Balagurusamy, Object Oriented Programming: The Big Nerd Ranch Guide. Addison-Wesley Professional, 2013. Yashwant P. Kanetkar, Let us C++, 2/e, BPB Publications, 2003 References: Deitel, Harvey M., and Paul J. Deitel., Java how to program.,7th International edition." (2007): 390-420. G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design with Applications, Addison-Wesley, 3rd Edition, 2007. Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. Stroustrup, Bjarne. The C++ programming language, Pearson Education India, 1986.	Course obj	ectives:		
 Syllabus: Object Oriented Programming and basics of C++, Advanced features of C++ programming such as exception handling and templates. Object oriented features of Java and their implementation. Advanced features of Java including packages, multithreading and error management. Introduction to Android application development with a case study. Expected outcome: The students will have: i. A thorough understanding of the features of OOP like class construction, polymorphism and inheritance of C++ and Java. ii. An understanding of advanced features of C++ such as templates, abstract classes and virtual functions. iii. Knowledge of advanced features of Java such as multithreading, packages and error management. iv. Skills in designing android application development. v. Skills in debugging, deploying and testing mobile applications. Text Books: I. E. Balagurusamy, Object Oriented Programming with C++ and JAVA, McGrawHill, 2015 2. Hardy, Brian, and Bill Phillips, Android Programming: The Big Nerd Ranch Guide. Addison-Wesley Professional, 2013. 3. Yashwant P. Kanetkar, Let us C++, 2/e, BPB Publications, 2003 References: I. Deitel, Harvey M., and Paul J. Deitel., Java how to program., 7th International edition." (2007): 390-420. 2. G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design with Applications, Addison-Wesley, 3rd Edition, 2007. 3. Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. 4. Samanta, Debasis, Object-Oriented programming with C++ and Java, PHI Learning Pvt. Ltd., 2006. 5. Stroustrup, Bjarne. The C++ programming language, Pearson Education India, 1986.			ng paradigm usir	g C++ and Java as the
 Object Oriented Programming and basics of C++, Advanced features of C++ programming such as exception handling and templates. Object oriented features of Java and their implementation. Advanced features of Java including packages, multithreading and error management. Introduction to Android application development with a case study. Expected outcome: The students will have: i. A thorough understanding of the features of OOP like class construction, polymorphism and inheritance of C++ and Java. ii. An understanding of advanced features of C++ such as templates, abstract classes and virtual functions. iii. Knowledge of advanced features of Java such as multithreading, packages and error management. iv. Skills in designing android application development. v. Skills in debugging, deploying and testing mobile applications. Text Books: E. Balagurusamy, Object Oriented Programming with C++ and JAVA, McGrawHill, 2015 Hardy, Brian, and Bill Phillips, Android Programming: The Big Nerd Ranch Guide. Addison-Wesley Professional, 2013. Yashwant P. Kanetkar, Let us C++, 2/e, BPB Publications, 2003 References: Deitel, Harvey M., and Paul J. Deitel., Java how to program., 7th International edition." (2007): 390-420. G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design with Applications, Addison-Wesley, 3rd Edition, 2007. Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. Stroustrup, Bjarne. The C++ programming with C++ and Java, PHI Learning Pvt. Ltd., 2006.		earn simple Android application develop	nent from the fu	ndamentals.
 such as exception handling and templates. Object oriented features of Java and their implementation. Advanced features of Java including packages, multithreading and error management. Introduction to Android application development with a case study. Expected outcome: The students will have: i. A thorough understanding of the features of OOP like class construction, polymorphism and inheritance of C++ and Java. ii. An understanding of advanced features of C++ such as templates, abstract classes and virtual functions. iii. Knowledge of advanced features of Java such as multithreading, packages and error management. iv. Skills in designing android application development. v. Skills in debugging, deploying and testing mobile applications. Text Books: 1. E. Balagurusamy, Object Oriented Programming with C++ and JAVA, McGrawHill, 2015 2. Hardy, Brian, and Bill Phillips, Android Programming: The Big Nerd Ranch Guide. Addison-Wesley Professional, 2013. 3. Yashwant P. Kanetkar, Let us C++, 2/e, BPB Publications, 2003 References: 1. Deitel, Harvey M., and Paul J. Deitel., Java how to program.,7th International edition." (2007): 390-420. 2. G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design with Applications, Addison-Wesley, 3rd Edition, 2007. 3. Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. 4. Samanta, Debasis, Object-Oriented programming with C++ and Java, PHI Learning Pvt. Ltd., 2006. 5. Stroustrup, Bjarne. The C++ programming language, Pearson Education India, 1986. 				
 implementation. Advanced features of Java including packages, multithreading and error management. Introduction to Android application development with a case study. Expected outcome: The students will have: A thorough understanding of the features of OOP like class construction, polymorphism and inheritance of C++ and Java. An understanding of advanced features of C++ such as templates, abstract classes and virtual functions. Knowledge of advanced features of Java such as multithreading, packages and error management. Skills in designing android application development. Skills in debugging, deploying and testing mobile applications. Text Books: E. Balagurusamy, Object Oriented Programming with C++ and JAVA, McGrawHill, 2015 Hardy, Brian, and Bill Phillips, Android Programming: The Big Nerd Ranch Guide. Addison-Wesley Professional, 2013. Yashwant P. Kanetkar, Let us C++, 2/e, BPB Publications, 2003 References: Deitel, Harvey M., and Paul J. Deitel., Java how to program.,7th International edition." (2007): 390-420. G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design with Applications, Addison-Wesley, 3rd Edition, 2007. Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. Samanta, Debasis, Object-Oriented programming with C++ and Java, PHI Learning Pvt. Ltd., 2006. Stroustrup, Bjarne. The C++ programming language, Pearson Education India, 1986. 		6		1 0 0
 management. Introduction to Android application development with a case study. Expected outcome: The students will have: A thorough understanding of the features of OOP like class construction, polymorphism and inheritance of C++ and Java. An understanding of advanced features of C++ such as templates, abstract classes and virtual functions. Knowledge of advanced features of Java such as multithreading, packages and error management. Skills in designing android application development. Skills in debugging, deploying and testing mobile applications. Text Books: E. Balagurusamy, Object Oriented Programming with C++ and JAVA, McGrawHill, 2015 Hardy, Brian, and Bill Phillips, Android Programming: The Big Nerd Ranch Guide. Addison-Wesley Professional, 2013. Yashwant P. Kanetkar, Let us C++, 2/e, BPB Publications, 2003 References: Deitel, Harvey M., and Paul J. Deitel., Java how to program.,7th International edition." (2007): 390-420. G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design with Applications, Addison-Wesley, 3rd Edition, 2007. Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. Samanta, Debasis, Object-Oriented programming with C++ and Java, PHI Learning Pvt. Ltd., 2006. Stroustrup, Bjarne. The C++ programming language, Pearson Education India, 1986. 				
 Expected outcome: The students will have: A thorough understanding of the features of OOP like class construction, polymorphism and inheritance of C++ and Java. An understanding of advanced features of C++ such as templates, abstract classes and virtual functions. Knowledge of advanced features of Java such as multithreading, packages and error management. Skills in designing android application development. Skills in debugging, deploying and testing mobile applications. Text Books: E. Balagurusamy, Object Oriented Programming with C++ and JAVA, McGrawHill, 2015 Hardy, Brian, and Bill Phillips, Android Programming: The Big Nerd Ranch Guide. Addison-Wesley Professional, 2013. Yashwant P. Kanetkar, Let us C++, 2/e, BPB Publications, 2003 References: Deitel, Harvey M., and Paul J. Deitel., Java how to program.,7th International edition." (2007): 390-420. G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design with Applications, Addison-Wesley, 3rd Edition, 2007. Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. Samanta, Debasis, Object-Oriented programming with C++ and Java, PHI Learning Pvt. Ltd., 2006. Stroustrup, Bjarne. The C++ programming language, Pearson Education India, 1986. 	-			-
 The students will have: A thorough understanding of the features of OOP like class construction, polymorphism and inheritance of C++ and Java. An understanding of advanced features of C++ such as templates, abstract classes and virtual functions. Knowledge of advanced features of Java such as multithreading, packages and error management. Skills in designing android application development. Skills in debugging, deploying and testing mobile applications. Text Books: E. Balagurusamy, Object Oriented Programming with C++ and JAVA, McGrawHill, 2015 Hardy, Brian, and Bill Phillips, Android Programming: The Big Nerd Ranch Guide. Addison-Wesley Professional, 2013. Yashwant P. Kanetkar, Let us C++, 2/e, BPB Publications, 2003 References: Deitel, Harvey M., and Paul J. Deitel., Java how to program.,7th International edition." (2007): 390-420. G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design with Applications, Addison-Wesley, 3rd Edition, 2007. Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. Samanta, Debasis, Object-Oriented programming with C++ and Java, PHI Learning Pvt. Ltd., 2006. Stroustrup, Bjarne. The C++ programming language, Pearson Education India, 1986. 	-	**	velopment with a	a case study.
 A thorough understanding of the features of OOP like class construction, polymorphism and inheritance of C++ and Java. An understanding of advanced features of C++ such as templates, abstract classes and virtual functions. Knowledge of advanced features of Java such as multithreading, packages and error management. Skills in designing android application development. Skills in debugging, deploying and testing mobile applications. Text Books: E. Balagurusamy, Object Oriented Programming with C++ and JAVA, McGrawHill, 2015 Hardy, Brian, and Bill Phillips, Android Programming: The Big Nerd Ranch Guide. Addison-Wesley Professional, 2013. Yashwant P. Kanetkar, Let us C++, 2/e, BPB Publications, 2003 References: Deitel, Harvey M., and Paul J. Deitel., Java how to program.,7th International edition." (2007): 390-420. G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design with Applications, Addison-Wesley, 3rd Edition, 2007. Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. Samanta, Debasis, Object-Oriented programming with C++ and Java, PHI Learning Pvt. Ltd., 2006. Stroustrup, Bjarne. The C++ programming language, Pearson Education India, 1986. 				
 polymorphism and inheritance of C++ and Java. ii. An understanding of advanced features of C++ such as templates, abstract classes and virtual functions. iii. Knowledge of advanced features of Java such as multithreading, packages and error management. iv. Skills in designing android application development. v. Skills in debugging, deploying and testing mobile applications. Text Books: E. Balagurusamy, Object Oriented Programming with C++ and JAVA, McGrawHill, 2015 Hardy, Brian, and Bill Phillips, Android Programming: The Big Nerd Ranch Guide. Addison-Wesley Professional, 2013. Yashwant P. Kanetkar, Let us C++, 2/e, BPB Publications, 2003 References: Deitel, Harvey M., and Paul J. Deitel., Java how to program.,7th International edition." (2007): 390-420. G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design with Applications, Addison-Wesley, 3rd Edition, 2007. Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. Stroustrup, Bjarne. The C++ programming with C++ and Java, PHI Learning Pvt. Ltd., 2006.			of OOD like alag	aconstruction
 An understanding of advanced features of C++ such as templates, abstract classes and virtual functions. Knowledge of advanced features of Java such as multithreading, packages and error management. Skills in designing android application development. Skills in debugging, deploying and testing mobile applications. Text Books: E. Balagurusamy, Object Oriented Programming with C++ and JAVA, McGrawHill, 2015 Hardy, Brian, and Bill Phillips, Android Programming: The Big Nerd Ranch Guide. Addison-Wesley Professional, 2013. Yashwant P. Kanetkar, Let us C++, 2/e, BPB Publications, 2003 References: Deitel, Harvey M., and Paul J. Deitel., Java how to program.,7th International edition." (2007): 390-420. G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design with Applications, Addison-Wesley, 3rd Edition, 2007. Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. Stroustrup, Bjarne. The C++ programming language, Pearson Education India, 1986.				s construction,
 and virtual functions. iii. Knowledge of advanced features of Java such as multithreading, packages and error management. iv. Skills in designing android application development. v. Skills in debugging, deploying and testing mobile applications. Text Books: 1. E. Balagurusamy, Object Oriented Programming with C++ and JAVA, McGrawHill, 2015 2. Hardy, Brian, and Bill Phillips, Android Programming: The Big Nerd Ranch Guide. Addison-Wesley Professional, 2013. 3. Yashwant P. Kanetkar, Let us C++, 2/e, BPB Publications, 2003 References: 1. Deitel, Harvey M., and Paul J. Deitel., Java how to program.,7th International edition." (2007): 390-420. 2. G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design with Applications, Addison-Wesley, 3rd Edition, 2007. 3. Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. 4. Samanta, Debasis, Object-Oriented programming with C++ and Java, PHI Learning Pvt. Ltd., 2006. 5. Stroustrup, Bjarne. The C++ programming language, Pearson Education India, 1986. 				anlatas abstract classes
 iii. Knowledge of advanced features of Java such as multithreading, packages and error management. iv. Skills in designing android application development. v. Skills in debugging, deploying and testing mobile applications. Text Books: E. Balagurusamy, Object Oriented Programming with C++ and JAVA, McGrawHill, 2015 Hardy, Brian, and Bill Phillips, Android Programming: The Big Nerd Ranch Guide. Addison-Wesley Professional, 2013. Yashwant P. Kanetkar, Let us C++, 2/e, BPB Publications, 2003 References: Deitel, Harvey M., and Paul J. Deitel., Java how to program.,7th International edition." (2007): 390-420. G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design with Applications, Addison-Wesley, 3rd Edition, 2007. Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. Samanta, Debasis, Object-Oriented programming with C++ and Java, PHI Learning Pvt. Ltd., 2006. Stroustrup, Bjarne. The C++ programming language, Pearson Education India, 1986.				lipiales, abstract classes
 error management. iv. Skills in designing android application development. v. Skills in debugging, deploying and testing mobile applications. Text Books: E. Balagurusamy, Object Oriented Programming with C++ and JAVA, McGrawHill, 2015 Hardy, Brian, and Bill Phillips, Android Programming: The Big Nerd Ranch Guide. Addison-Wesley Professional, 2013. Yashwant P. Kanetkar, Let us C++, 2/e, BPB Publications, 2003 References: Deitel, Harvey M., and Paul J. Deitel., Java how to program.,7th International edition." (2007): 390-420. G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design with Applications, Addison-Wesley, 3rd Edition, 2007. Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. Samanta, Debasis, Object-Oriented programming with C++ and Java, PHI Learning Pvt. Ltd., 2006. Stroustrup, Bjarne. The C++ programming language, Pearson Education India, 1986.			uch as multithre	ading nackages and
 iv. Skills in designing android application development. v. Skills in debugging, deploying and testing mobile applications. Text Books: E. Balagurusamy, Object Oriented Programming with C++ and JAVA, McGrawHill, 2015 Hardy, Brian, and Bill Phillips, Android Programming: The Big Nerd Ranch Guide. Addison-Wesley Professional, 2013. Yashwant P. Kanetkar, Let us C++, 2/e, BPB Publications, 2003 References: Deitel, Harvey M., and Paul J. Deitel., Java how to program.,7th International edition." (2007): 390-420. G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design with Applications, Addison-Wesley, 3rd Edition, 2007. Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. Stroustrup, Bjarne. The C++ programming language, Pearson Education India, 1986.		•	aon as mannine	ading, packages and
 v. Skills in debugging, deploying and testing mobile applications. Text Books: E. Balagurusamy, Object Oriented Programming with C++ and JAVA, McGrawHill, 2015 Hardy, Brian, and Bill Phillips, Android Programming: The Big Nerd Ranch Guide. Addison-Wesley Professional, 2013. Yashwant P. Kanetkar, Let us C++, 2/e, BPB Publications, 2003 References: Deitel, Harvey M., and Paul J. Deitel., Java how to program.,7th International edition." (2007): 390-420. G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design with Applications, Addison-Wesley, 3rd Edition, 2007. Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. Samanta, Debasis, Object-Oriented programming with C++ and Java, PHI Learning Pvt. Ltd., 2006. Stroustrup, Bjarne. The C++ programming language, Pearson Education India, 1986. 		0	velopment.	
 Text Books: E. Balagurusamy, Object Oriented Programming with C++ and JAVA, McGrawHill, 2015 Hardy, Brian, and Bill Phillips, Android Programming: The Big Nerd Ranch Guide. Addison-Wesley Professional, 2013. Yashwant P. Kanetkar, Let us C++, 2/e, BPB Publications, 2003 References: Deitel, Harvey M., and Paul J. Deitel., Java how to program.,7th International edition." (2007): 390-420. G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design with Applications, Addison-Wesley, 3rd Edition, 2007. Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. Samanta, Debasis, Object-Oriented programming with C++ and Java, PHI Learning Pvt. Ltd., 2006. Stroustrup, Bjarne. The C++ programming language, Pearson Education India, 1986. 			-	ions.
 2015 Hardy, Brian, and Bill Phillips, Android Programming: The Big Nerd Ranch Guide. Addison-Wesley Professional, 2013. Yashwant P. Kanetkar, Let us C++, 2/e, BPB Publications, 2003 References: Deitel, Harvey M., and Paul J. Deitel., Java how to program.,7th International edition." (2007): 390-420. G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design with Applications, Addison-Wesley, 3rd Edition, 2007. Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. Samanta, Debasis, Object-Oriented programming with C++ and Java, PHI Learning Pvt. Ltd., 2006. Stroustrup, Bjarne. The C++ programming language, Pearson Education India, 1986. 	Text Books): 		
 Hardy, Brian, and Bill Phillips, Android Programming: The Big Nerd Ranch Guide. Addison-Wesley Professional, 2013. Yashwant P. Kanetkar, Let us C++, 2/e, BPB Publications, 2003 References: Deitel, Harvey M., and Paul J. Deitel., Java how to program.,7th International edition." (2007): 390-420. G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design with Applications, Addison-Wesley, 3rd Edition, 2007. Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. Samanta, Debasis, Object-Oriented programming with C++ and Java, PHI Learning Pvt. Ltd., 2006. Stroustrup, Bjarne. The C++ programming language, Pearson Education India, 1986. 	1. E. Bala	gurusamy, Object Oriented Programmin	g with C++ and	JAVA, McGrawHill,
 Addison-Wesley Professional, 2013. 3. Yashwant P. Kanetkar, Let us C++, 2/e, BPB Publications, 2003 References: Deitel, Harvey M., and Paul J. Deitel., Java how to program.,7th International edition." (2007): 390-420. G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design with Applications, Addison-Wesley, 3rd Edition, 2007. Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. Samanta, Debasis, Object-Oriented programming with C++ and Java, PHI Learning Pvt. Ltd., 2006. Stroustrup, Bjarne. The C++ programming language, Pearson Education India, 1986. 	2015			
 Yashwant P. Kanetkar, Let us C++, 2/e, BPB Publications, 2003 References: Deitel, Harvey M., and Paul J. Deitel., Java how to program.,7th International edition." (2007): 390-420. G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design with Applications, Addison-Wesley, 3rd Edition, 2007. Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. Samanta, Debasis, Object-Oriented programming with C++ and Java, PHI Learning Pvt. Ltd., 2006. Stroustrup, Bjarne. The C++ programming language, Pearson Education India, 1986. 	-		amming: The B	ig Nerd Ranch Guide.
 References: Deitel, Harvey M., and Paul J. Deitel., Java how to program.,7th International edition." (2007): 390-420. G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design with Applications, Addison-Wesley, 3rd Edition, 2007. Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. Samanta, Debasis, Object-Oriented programming with C++ and Java, PHI Learning Pvt. Ltd., 2006. Stroustrup, Bjarne. The C++ programming language, Pearson Education India, 1986. 		•		
 Deitel, Harvey M., and Paul J. Deitel., Java how to program.,7th International edition." (2007): 390-420. G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design with Applications, Addison-Wesley, 3rd Edition, 2007. Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. Samanta, Debasis, Object-Oriented programming with C++ and Java, PHI Learning Pvt. Ltd., 2006. Stroustrup, Bjarne. The C++ programming language, Pearson Education India, 1986. 			lications, 2003	
 (2007): 390-420. G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design with Applications, Addison-Wesley, 3rd Edition, 2007. Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. Samanta, Debasis, Object-Oriented programming with C++ and Java, PHI Learning Pvt. Ltd., 2006. Stroustrup, Bjarne. The C++ programming language, Pearson Education India, 1986. 			t	h –
 G. Booch, R. A. Maksimchuk, M. W. Engel, and B J. Young, Object-oriented Analysis and Design with Applications, Addison-Wesley, 3rd Edition, 2007. Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. Samanta, Debasis, Object-Oriented programming with C++ and Java, PHI Learning Pvt. Ltd., 2006. Stroustrup, Bjarne. The C++ programming language, Pearson Education India, 1986. 			v to program.,7 ^u	" International edition."
 Horstmann, Cay S., and Gary Cornell., Core Java 2: Volume I, Fundamentals, Pearson Education, 2002. Samanta, Debasis, Object-Oriented programming with C++ and Java, PHI Learning Pvt. Ltd., 2006. Stroustrup, Bjarne. The C++ programming language, Pearson Education India, 1986. 	2. G. Bood	ch, R. A. Maksimchuk, M. W. Engel, an		
 Education, 2002. 4. Samanta, Debasis, Object-Oriented programming with C++ and Java, PHI Learning Pvt. Ltd., 2006. 5. Stroustrup, Bjarne. The C++ programming language, Pearson Education India, 1986. 				
Ltd., 2006.5. Stroustrup, Bjarne. The C++ programming language, Pearson Education India, 1986.			a 2. volume I,	runuamentais, Pearson
5. Stroustrup, Bjarne. The C++ programming language, Pearson Education India, 1986.	4. Samanta	a, Debasis, Object-Oriented programming	g with C++ and .	Java, PHI Learning Pvt.
5. Stroustrup, Bjarne. The C++ programming language, Pearson Education India, 1986.	Ltd., 20	06.		
			age, Pearson Edu	cation India, 1986.
			-	<i>`</i>

	Course Plan		
Module	Course content	Hours	End Sem. Exam Marks
T	Concepts of OOP – Introduction to OOP, Procedural Vs. Object Oriented Programming, Principles of OOP, Benefits and applications of OOP.	2	15
Ι	Beginning with C++: Overview and Structure of C++ Program, Classes and Objects, Constructors and Destructors.	4	
IJ	Operator Overloading and Inheritance – Overloading Unary Operators, Overloading Binary Operators, Overloading Binary Operators using Friends, Manipulation of Strings Using Operators.	4	15
II	Inheritance – Multilevel Inheritance, Multiple Inheritance, Hierarchical Inheritance, Hybrid Inheritance. Virtual Base Classes, Abstract Classes, Constructors in Derived Classes, Member Classes: Nesting of Classes	5	15
	FIRST INTERNAL EXAM		
III	Virtual Functions and Polymorphism – Pointers to objects, this pointer, Pointers to derived classes, Virtual functions, Virtual Constructors and Destructors.	6	15
IV	Programming with JAVA – Overview of Java Language, Classes Objects and Methods, Method Overloading and Inheritance, Overriding Methods, Final Variables and Methods. Interfaces, Packages, Multithreaded programming, Managing Errors and Exceptions.	8	15
	SECOND INTERNAL EXAM		
V	Introduction to Android : Setting up Development Environment, Basic Building blocks – Activities, Services, Broadcast Receivers & Content providers, UI Components – Views & notifications, Components for communication – Intents & Intent Filters,	6	20
VI	Application Structure-Android Manifest.xml, uses-permission & uses-sdk, Layouts & Drawable Resources, First sample Application, Emulator-Android Virtual Device, Basic UI design, Styles & Themes, Content Providers-SQLite Programming, Case study –Develop an App to demonstrate database usage.	7	20
	END SEMESTER EXAM		

Assignment:

- 1. Assignment for implementing virtual base class in C++ related to some application.
- Assignment for implementing a simple interactive applet in Java (eg: calculator)
 A group assignment on simple android mobile app (eg: managing students' details and rank calculation of a class).

Time : 3 hours

Question Paper Pattern (End semester exam)

Maximum marks : 100

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 60 % for theory and 40% for logical/numerical problems, derivation and proof.

COURSE CODE	COURSE NAME	L-T-P-C	YEAR OF INTRODUCTION
EC332	Communication Engineering Lab (Analog & Digital)	0-0-3-1	2016
Prerequisite	e: EC204 Analog Integrated Circuit, EC208	3 Analog Communi	cation Engineering.
Course obje	ectives:		
• To p	rovide experience on design, testing and an	nalysis of few electr	onic circuits used in
com	nunication engineering.		
List of Expe	eriments:		
Cycle I	(Six experiments are mandatory)		
1.	AM generation using discrete components		
2.	AM using multiplier IC AD534 or AD633	3.	
3.	AM detection using envelope detector.		
4.	IF tuned amplifier.		
5.	FM using 555 IC.		
6.	FM generation and demodulation using Pl	LL.	
7.	Frequency multiplier using PLL		
8.	Pre-emphasis and de-emphasis circuits		
9.	Analog signal sampling & Reconstruction	l	
Cycle I	(Six mandatory)		
	Generation of Pseudo Noise Binary seque	nce using Shift regi	sters
	Time Division Multiplexing and Demultiplexing		
12.	Generation & Detection of DM/SIGMA	DELTA/ ADM	
13.	Generation & Detection of PAM/PWM/P	PM	
14.	Generation & Detection of BPSK/DPSK/	DEPSK	
15.	Generation & Detection of PCM		
16	16 QPSK Modulation and Demodulation		

systems.

COURSE CODE	COURSE NAME	L-T-P-C	YEAR OF INTRODUCTION		
EC334	Microcontroller Lab	0-0-3-1	2016		
Prerequisite:	EC305 Microprocessors & Microcontrollers				
Course objec					
	derstand Assembly Language/embedded C program	-	ocontroller.		
	erface simple peripheral devices to a Microcontrolle				
	ip student groups to design and implement simple	embedded syst	tems.		
List of Exper					
	t least 6 experiments are mandatory)				
Assembly	Language Programming experiments using 805	1 Trainer kit.			
1 Da	to transfor/an abance between an eifed momenty los	ations			
 Data transfer/exchange between specified memory locations. Largest/smallest from a series. 					
 Largest/smallest from a series. Sorting (Ascending/Descending) of data. 					
 Addition / subtraction / multiplication / division of 8/16 bit data. 					
	m of a series of 8 bit data.				
	6. Multiplication by shift and add method.				
-	uare / cube / square root of 8 bit data.				
	atrix addition.				
	M and HCF of two 8 bit numbers. de conversion – Hex to Decimal/ASCII to Decimal	and vice very	0		
10. CC	de conversion – nex to Decimal/ASCII to Decimal	and vice vers	a.		
PART –B (A	t least 4 experiments are mandatory)				
Interfacir	g experiments using 8051 Trainer kit and interfa	acing module	S.		
	ne delay generation and relay interface.	-			
	splay (LED/Seven segments/LCD) and keyboard in	terface.			
	DC interface.				
	AC interface with wave form generation.				
	epper motor and DC motor interface.				
	alization of Boolean expression through port. evator interfacing.				
7. EK	vator merraenig.				
PART -C(At	least 2 experiments are mandatory)				
Program	ning / interfacing experiments with IDE for 80	51/PIC/MSP	/Arduino/Raspberry		
-	interfacing boards/sensor modules (Direct of				
ALP/'C'/	Python programs can be used).	_	_		
1. Re	lay control				
2. Di	stance measurement.				
3. Te	mperature measurement / Digital Thermometer				
	r-Rxr interface.				
5. Al	phanumeric LCD display interface.				
	nple project work including multiple interfaces.				

Expected outcome:

- The students will be able to:
- 1. Program Micro controllers.
- 2. Interface various peripheral devices to Micro controller.
- 3. Function effectively as an individual and in a team to accomplish the given task.

Course code	Course Name	L-T-P - Credits	Year of Introduction		
**352	Comprehensive Examination	0-1-1-2	2016		
Prerequisite : Nil					
Course Object	ives				
• To asses study	ss the comprehensive knowledge gained	in basic courses relevant	to the branch of		
• To comprehend the questions asked and answer them with confidence.					
To comp Assessment	prehend the questions asked and answer	them with confidence.			

Oral examination – To be conducted by the college (@ three students/hour) covering all the courses up to and including V semester– 50 marks

Written examination - To be conducted by the Dept. on the date announced by the University– common to all students of the same branch – objective type (1 hour duration)– 50 multiple choice questions (4 choices) of 1 mark each covering the six common courses of S1&S2 and six branch specific courses listed – questions are set by the University - no negative marks – 50 marks.

Note: Both oral and written examinations are mandatory. But separate minimum marks is not insisted for pass. If a students does not complete any of the two assessments, grade I shall be awarded and the final grade shall be given only after the completion of both the assessments. The two hours allotted for the course may be used by the students for discussion, practice and for oral assessment.

Expected outcome.

• The students will be confident in discussing the fundamental aspects of any engineering problem/situation and give answers in dealing with them

