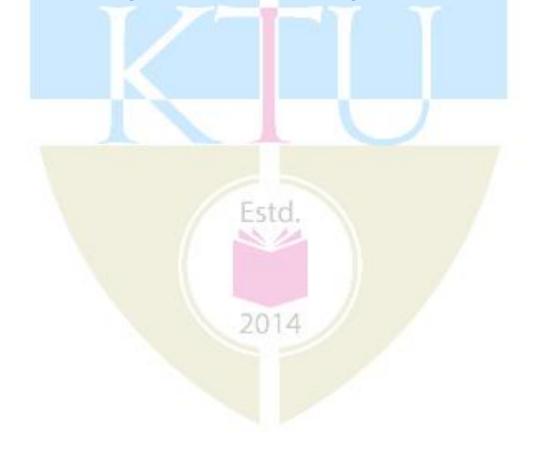
Course coo	le Course Name	L-T-P - Credits		ear of oduction
EE301	POWER GENERATION, TRANSMISSION AND PROTECTION	3-1-0-4		2016
Prerequisit	te : Nil			
Course Ob	jectives			
• T	o set a foundation on the fundamental conc	epts of	Powe	er Systen
G	eneration, Transmission, Distribution and Protection.	I A I	1	
power gener and capacita transmission of conductor Insulators- t -need for pro- insulation co Expected	eration-conventional-hydrothermal, nuclear - non conventional ation-Power factor Improvement-Power transmission -line parar ance- Transmission line modelling- classifications -short lin line as two port network-parameters- derivation -Overhead line ss- Kelvin's law- Types of Towers-calculation of Sag and tensior ypes -corona-underground cables-H V DC transmission-Flexi otection-circuit breakers-protective relay types -Types of protection ordination – Power Distribution system outcome . ss will be able to	meters -resi ne, mediur s- types of n- ble A C ta	stance- n line, conduc ransmis	inductance long line- tors-volume sion-
ii.	Know the basic aspects in the area of power generation, traprotection. Design power factor correction equipment, transmission line parvarious protection schemes to be adopted in various cases.			
Text Book		1.6		
	P Kothari and I Nagrath, "Power System Engineering," 2/e Tata M dhwa, "Electrical Power system", Wiley Eastern Ltd. 2005	lcGraw Hill	ls, 2008	
Eng 2. Grai 3. I.J.N 4. K.R	hakrabarti, ML.Soni, P.V.Gupta, V.S.Bhatnagar, "A tex ineering" Dhanpat Rai, 2000 iner J.J, Stevenson W.D, "Power system Analysis", McGraw Vagarath & D.P. Kothari, "Power System Engineering", TM Padiyar," FACTS Controllers for Transmission and	v Hill H Publicat	tion,	
	rnational, New Delhi			
	venson Jr. Elements of Power System Analysis, TMH			
6. Sun	il S Rao ,"Switch gear and Protection",Khanna Publishers Course Plan	-		
Module	Contents 14	Ho	ours	Sem. Exam Marks
I	Introduction: Typical layout of Power system Network Generation of Electric Power: Overview of conventional (Hydro, Thermal and Nuclear) Nonconventional Sources (Solar and Wind) (Block Diag and Brief Description Only) Economics of Generation: Load factor, diversity factor, I curve (Brief description only) Numerical Problems. Methods of power factor improvement using capacitors	ram	9	15%
II	Power Transmission Transmission Line Parameters: Resistance, inductance capacitance of 1- Φ , 2 wire lines-composite conduction		0	15%

	(Derivation Required). Inductance and capacitance of 3-Φ lines. Symmetrical and unsymmetrical spacing-transposition-double circuit lines- bundled conductors (Derivation Required) .Numerical Problems		
	Modelling of Transmission Lines : Classification of lines-short lines-voltage regulation and efficiency-medium lines-nominal T and Π configurations-ABCD constants- long lines- rigorous solution- interpretation of long line equation-Ferranti effect.	AM A I	
	FIRST INTERNAL EXAMINATION	AL	
III	 Introduction of Overhead transmission and underground transmission Conductors -types of conductors -copper, Aluminium and ACSR conductors -Volume of conductor required for various systems of transmission-Choice of transmission voltage, conductor size -Kelvin's law. Mechanical Characteristics of transmission lines – configuration-Types of Towers. Calculation of sag and tension-supports at equal and unequal heights -effect of wind and ice-sag template Insulators -Different types -Voltage distribution, grading and string efficiency of suspension insulators. Corona -disruptive critical voltage -visual critical voltage -power loss due to 	9	15%
	corona - Factors affecting corona - interference on communication lines. Underground Cables - types of cables - insulation resistance voltage stress - grading of cables - capacitance of single core and		15%
IV	 3 -core cables -current rating. HVDC Transmission: Comparison between AC &DC Transmission ,Power flow equations and control, Types of DC links Flexible AC Transmission systems: Need and Benefits, SVC, Configuration of FC + TCR, Series compensation: Configuration of TCSC 	8	
	SECOND INTERNAL EXAMINATION		
V	Need for power system protection.Circuit breakers – principle of operation- formation of arc- Arc quenching theory- Restriking Voltage-Recovery voltage, RRRV (Derivation Required).RRRV (Derivation Required).Interruption of Capacitive currents and current chopping (Brief Description Only).Types of Circuit Breakers: Air blast CB – Oil CB – SF6 CB – Vacuum CB – CB ratings.		20%

	Protective Relays- Zones of Protection, Essential Qualities- Classification of Relays -Electro mechanical, Static Relays, Microprocessor Based Relay.	10	
	Electromechanical Relays-Attracted Armature, Induction disc, Thermal Relays (Brief Description only)		
	Static Relays-Merits and Demerits, Basic components,		
	Comparison and duality of Amplitude and Phase comparators. Static overcurrent, Differential, Distance Relays, Directional Relay-(principle and Block diagram only)	AM	
	Microprocessor Based Relay-Block diagram and flow chart of Over current Relay, Numerical Relay(Basics Only)	AL	
	Protection of alternator: Stator inter turn, Earth fault	1 2 200	20%
	Protection and Differential protection		
	Protection of transformers- Percentage Differential		
	Protection-Buchholz Relay Protection of transmission lines- Differential Protection-		
VI	carrier current protection		
VI	Protection against over voltages: Causes of over voltages -		
	Surge diverters - Insulation co-ordination		
	Power distribution systems – Radial and Ring Main Systems -		
	DC and AC distribution: Types of distributors- bus bar arrangement -Concentrated and Uniform loading -Methods of	10	
	solving distribution problems.		
	END SEME <mark>ST</mark> ER EXAM		

Maximum Marks: 100

Exam Duration: 3Hourrs.


Part A: 8 compulsory questions.

One question from each module of Module I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course c	ode Course Name	L-T-P - Credits	Year Introdu	
EE302	ELECTROMAGNETICS	2-1-0-3	201	
Prerequisi	ite: Nil	I		
Course O				
	• To develop a conceptual basis of e	electrostatics, magnetostatics, el	ectromag	netic
	waves			
	• To understand various engineerin	g applications of electromagneti	cs	
Syllabus		<u>8</u>	•••	
	on to vector calculus, Electrostatics, Electri	cal potential, energy density and the	eir applicat	ions.
	tatics, magnetic flux density, scalar and ver			
	d magnetic fields, Electromagnetic waves	C. AL	•	e
Expecte	d outcome .	DOITY		
The studen	ts will be able to:	RVIY		
i.	Analyze fields and potentials due to stati	0		
ii.	Explain the physical meaning of the diff	-	nd magnet	ic fields
iii.	Understand how materials are affected	•		
iv.	Understand the relation between the field	· •		
v.	Understand principles of propagation of	-		
Vi.	Be aware of electromagnetic interference	e and compatibility		
Text Bo		· · · · · · · · · · · · · · · · · · ·	TT 11 T	
	Jannapeni Narayana Rao, "Elements of Eng		ce Hall Ind	1a
	adiku M. N. O, Elements of Electromagne			
	ok (Approved for use in the exam <mark>in</mark> a	ition):		
Referen				
	Cheng D. K., Field and Wave Electromagnet		1 2006	
	Edminister J. A., Electromagnetics, Schaur Gangadhar K. A. and P. M. Ramanathan, E			re
	009.	rectromagnetic neid theory, Khan	lia i uolisik	15,
	layt W. H. and J. A. Buck, Engineering El	ectromagnetics, 8/e, McGraw-Hill,	2012.	
	nan U. S. and A. S. Inan, Engineering Elec			
6. J	ohn Krauss and Daniel A. Fleisch, Electron	nagnetics with Applications, McGr	aw-Hill, 5 th	dition
7. N	Iurthy T. V. S. A, Electromagnetic field, S	. Chand Ltd, 2008.		
8. P	remlet B. <mark>, Electromagnetic th</mark> eory with app	olications, Phasor Books, 2000.		
9. S	.C.Mahapatra and Sudipta Mahapatra ,Prir		w-Hill, 201	15
	Со	urse Plan	-	
				Sem.
Module	Conten	ts	Hours	Exam Marks
	STATIC ELECTRIC FIELDS: Intro	duction to Co-ordinate System -		
	Rectangular – Cylindrical and Spherical	-		
Ι	a Scalar field, Divergence of a Vec	-		15%
•	field- Their Physical interpretation.			1070
	Theorem. Numerical problems	,		
	Coulomb's Law, Electric field inten	sity. Field due to a line charge.		
	Sheet Charge and Continuous Volum			
	Flux and Flux Density; Gauss's la			150/
II	Potential-The Potential Gradient.		X	15%
		1		1
	Equipotential surfaces. Canacitance	- capacitance of co-axial cable		
	Equipotential surfaces. Capacitance two wire line. Poisson's and Laplace's	1		

III	STATIC MAGNETIC FIELD: Biot-Savart Law, Amperes Force Law.– Magnetic Field intensity due to a finite and infinite wire carrying a current–Magnetic field intensity on the axis of a circular and rectangular loop carrying a current –Magnetic vector potential, Magnetic flux Density and Ampere's circuital law and simple applications.	6	15%
IV	ELECTRIC AND MAGNETIC FIELDS IN MATERIALS—Electric Polarization-Nature of dielectric materials-Electrostatic energy and energy density—Boundary conditions for electric fields and magnetic fields—Conduction current and displacement current densities— continuity equation for current. Maxwell's Equation in Differential and integral form from Modified form of Ampere's circuital law, Faraday's Law and Gauss Law	8	15%
	SECOND INTERNAL EXAMINATION		
V	TIME VARYING ELECTRIC AND MAGNETIC FIELDS:. Poynting Vector and Poynting Theorem – Power flow in a co-axial cable – Complex Average Poynting Vector. ELECTROMAGNETIC WAVES: Wave Equation from Maxwell's Equation – Uniform Plane Waves –Wave equation in Phasor form	7	20%
VI	Plane waves propagation in loss less and lossy dielectric medium and conducting medium. Plane wave in good conductor, surface resistance, Skin depth, Intrinsic Impedance and Propagation Constant in all medium. Phase and group velocity. Transmission lines: waves in transmission line –solution for loss less lines –characteristic impedance – VSWR – impedance matching. Introduction to Electromagnetic interference and compatibility.	7	20%
	END SEMESTER EXAM		

Estd

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Cour	rse Course Name L-T-P - Credits		ear of oduction
cod			
EE3	B03Linear Control Systems2-1-0-3		2016
Prereg	uisite: Nil		
	Objectives:		
	To provide a strong foundation on the analytical and design techniques on	classical co	ontrol theory
	and modelling of dynamic systems	enussieur ex	sind of theory
error- sta	IS : op-and closed loop control systems- Transfer function - Control system atic error coefficient- dynamic error coefficient-Stability Analysis- Root -Bode plot-polar plot-Nyquist stability criterion- Non-minimum phase sys	locus- Freq	uency domain
	ed outcome.		
The stud	lents will have the ability to		
i.	develop mathematical models of various systems.		
ii.	analyse the stability aspects of linear time invariant systems.		
Text B	Books:		
Refere	Nagarath I. J. and Gopal M., Control System Engineering, Wiley Eastern Nise N. S., Control Systems Engineering, 6/e, Wiley Eastern, 2010. Ogata K., Modern Control Engineering, Prentice Hall of India, New Delle ences:		
20 2) Go 3) Im	 ibson J. E., F. B. Tuteur and J. R. Ragazzini, Control System Component (13) opal M., Control Systems Principles and Design, Tata McGraw Hill, 2008 (14) opal M., Control Systems, Phasor Books, 2016 opal C., Automatic Control Systems, Prentice Hall of India, New Delhi, 2008 		McGraw Hill,
20 2) Go 3) Im	013 opal M., Control Systems Principles and Design, Tata McGraw Hill, 2008 nthias Ahamed T P, <i>Control Systems</i> , Phasor Books, 2016 uo B. C., Automatic Control Systems, Prentice Hall of India, New Delhi, 2		McGraw Hill
20 2) Go 3) Im	013 opal M., Control Systems Principles and Design, Tata McGraw Hill, 2008 othias Ahamed T P, <i>Control Systems</i> , Phasor Books, 2016		
20 2) Go 3) Im	013 opal M., Control Systems Principles and Design, Tata McGraw Hill, 2008 nthias Ahamed T P, <i>Control Systems</i> , Phasor Books, 2016 uo B. C., Automatic Control Systems, Prentice Hall of India, New Delhi, 2		Sem.
20 2) Go 3) Im 4) Ku	013 opal M., Control Systems Principles and Design, Tata McGraw Hill, 2008 othias Ahamed T P, <i>Control Systems</i> , Phasor Books, 2016 uo B. C., Automatic Control Systems, Prentice Hall of India, New Delhi, 2 Course Plan	2002. Hour LTI and ram 8	Sem. S Exam
20 2) Go 3) Im 4) Ku Module	opal M., Control Systems Principles and Design, Tata McGraw Hill, 2008 opal M., Control Systems Principles and Design, Tata McGraw Hill, 2008 on thias Ahamed T P, <i>Control Systems</i> , Phasor Books, 2016 uo B. C., Automatic Control Systems, Prentice Hall of India, New Delhi, 2 Course Plan Contents Open loop-and closed loop control systems: Transfer function of a systems-Mechanical and Electromechanical systems – Force voltage force current analogy - block diagram representation - block diag reduction - signal flow graph - Mason's gain formula - characteric	2002. Hour LTI and ram stic	rs Exam Marks
20 2) Go 3) Im 4) Ku Module	013 opal M., Control Systems Principles and Design, Tata McGraw Hill, 2008 othias Ahamed T P, Control Systems, Phasor Books, 2016 uo B. C., Automatic Control Systems, Prentice Hall of India, New Delhi, 2 Course Plan Contents Open loop-and closed loop control systems: Transfer function of systems-Mechanical and Electromechanical systems – Force voltage force current analogy - block diagram representation - block diagram representation - block diagram reduction - signal flow graph - Mason's gain formula - characteri equation.	2002. Hour LTI and ram stic	rs Exam Marks
20 2) Go 3) Im 4) Ku Module	013 opal M., Control Systems Principles and Design, Tata McGraw Hill, 2008 othias Ahamed T P, Control Systems, Phasor Books, 2016 uo B. C., Automatic Control Systems, Prentice Hall of India, New Delhi, 2 Course Plan Contents Open loop-and closed loop control systems: Transfer function of 2 systems-Mechanical and Electromechanical systems – Force voltage force current analogy - block diagram representation - block diagreduction - signal flow graph - Mason's gain formula - characterie equation. Control system components: DC and AC servo motors – synchrometary	Hour LTI and ram 8 istic 6	rs Exam Marks
20 2) Go 3) Im 4) Ku Module	013 opal M., Control Systems Principles and Design, Tata McGraw Hill, 2008 anthias Ahamed T P, Control Systems, Phasor Books, 2016 uo B. C., Automatic Control Systems, Prentice Hall of India, New Delhi, 2 Course Plan Contents Open loop-and closed loop control systems: Transfer function of a systems-Mechanical and Electromechanical systems – Force voltage force current analogy - block diagram representation - block diag reduction - signal flow graph - Mason's gain formula - characteri equation. Control system components: DC and AC servo motors – synchrod gyroscope - stepper motor - Tacho generator. Time domain analysis of control systems: Transient and steady staresponses - time domain specifications - first and second order systems	Hour LTI and ram 8 istic 6	rs Sem. Exam Marks 15%
20 2) Go 3) Im 4) Ku Module	013 opal M., Control Systems Principles and Design, Tata McGraw Hill, 2008 nthias Ahamed T P, Control Systems, Phasor Books, 2016 uo B. C., Automatic Control Systems, Prentice Hall of India, New Delhi, 2 Course Plan Course Plan Open loop-and closed loop control systems: Transfer function of 2 systems-Mechanical and Electromechanical systems – Force voltage force current analogy - block diagram representation - block diagreduction - signal flow graph - Mason's gain formula - characteri equation. Control system components: DC and AC servo motors – synchrod gyroscope - stepper motor - Tacho generator. Time domain analysis of control systems: Transient and steady star responses - time domain specifications - first and second order systems step responses of first and second order systems. FIRST INTERNAL EXAMINATION	Hour LTI and ram stic - ate s -	rs Sem. Exam Marks 15%
20 2) Go 3) Im 4) Ku Module	013 opal M., Control Systems Principles and Design, Tata McGraw Hill, 2008 nthias Ahamed T P, Control Systems, Phasor Books, 2016 uo B. C., Automatic Control Systems, Prentice Hall of India, New Delhi, 2 Course Plan Contents Open loop-and closed loop control systems: Transfer function of systems-Mechanical and Electromechanical systems – Force voltage force current analogy - block diagram representation - block diagreduction - signal flow graph - Mason's gain formula - characteri equation. Control system components: DC and AC servo motors – synchrod gyroscope - stepper motor - Tacho generator. Time domain analysis of control systems: Transient and steady star responses - time domain specifications - first and second order systems step responses of first and second order systems. FIRST INTERNAL EXAMINATION Error analysis - steady state error analysis - static error coefficient of t 0,1, 2 systems - Dynamic error coefficients. Concept of stability: Time response for various pole locations - stability	2002. Hour LTI and ram 8 istic 8 0 - ate 6 s - 6	rs Sem. Exam Marks 15%
20 2) Go 3) Im 4) Ku Module I II	013 opal M., Control Systems Principles and Design, Tata McGraw Hill, 2008 nthias Ahamed T P, Control Systems, Phasor Books, 2016 uo B. C., Automatic Control Systems, Prentice Hall of India, New Delhi, 2 Course Plan Course Plan Open loop-and closed loop control systems: Transfer function of 2 Open loop-and closed loop control systems: Transfer function of 2 open colspan="2">Open loop-and closed loop control systems: Transfer function of 2 Open loop-and closed loop control systems: Transfer function of 2 open colspan="2">open colspan="2">open colspan="2">open colspan="2">Open loop-and closed loop control systems: Transfer function of 2 Open loop-and closed loop control systems: Transfer function of 2 Open loop-and closed loop control systems: Transfer function of 2 open colspan="2">open colspan= colspan="2">open colspan="2" Open colspa	2002. Hour LTI and ram 8 stic 8 - 6 s - 6 s - 7 ype 7	rs Sem. Exam Marks 15%
20 2) Gd 3) Im 4) Ku Module I II III	013 opal M., Control Systems Principles and Design, Tata McGraw Hill, 2008 nthias Ahamed T P, Control Systems, Phasor Books, 2016 uo B. C., Automatic Control Systems, Prentice Hall of India, New Delhi, 2 Course Plan Course Plan Open loop-and closed loop control systems: Transfer function of Systems-Mechanical and Electromechanical systems – Force voltage force current analogy - block diagram representation - block diagreduction - signal flow graph - Mason's gain formula - characterie equation. Control system components: DC and AC servo motors – synchro gyroscope - stepper motor - Tacho generator. Time domain analysis of control systems: Transient and steady staresponses - time domain specifications - first and second order systems step responses of first and second order systems. FIRST INTERNAL EXAMINATION Error analysis - steady state error analysis - static error coefficient of t 0,1, 2 systems - Dynamic error coefficients. Concept of stability: Time response for various pole locations - stability feedback system - Routh's stability criterion Root locus - General rules for constructing Root loci – stability from the stability criterion	2002. Hour LTI and ram 8 stic 8 - 6 s - 6 s - 7 ype 7 y of 7	rs Sem. Exam Marks 15%

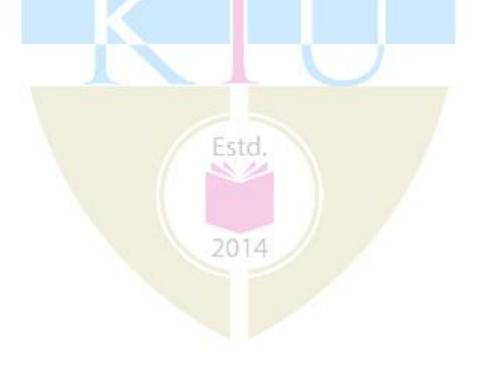
VI	Polar plot- Nyquist stability criterion-Nichols chart - Non-minimum phase	7	20%
V I	system - transportation lag.	/	2070

END SEMESTER EXAM

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.


Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course co	de Course Name	L-T-P -Credits	Year of Intr	oduction
EE304	Advanced Control Theory	3-1-0-4	201	6
	ite: EE303 Linear control systems			
Course O				
	provide a strong concept on the compensa	tor design and on a	dvanced contr	rol system
	lysis and design techniques	tor debrgir und on d		ior system
	analyse the behaviour of discrete time syste	ms and nonlinear co	ntrol systems.	
	ADI ADIDI II	TZATA	N.A.	
Syllabus:	APAND	KALA	M	
Compensa	tor design-Frequency domain approach-roo	ot locus method-Tu	ning of P, Pl	and PID
	State space analysis of systems-state feedb			ta control
	onlinear systems-describing function-phase	plane-Lyapunov me	thod.	
Expected		VIIY		
	sful completion, students will have the abilit			
i.	design compensators using classical technic	-		
ii.	analyse both linear and nonlinear system us	e 1	nods.	
iii.	analyse the stability of discrete system and	nonlinear system.		
Text Boo			1 (1117) 200	22
	Hassan K Khalil, Nonlinear Systems, Pren			52.
2	Kuo B.C, Analysis and Synthesis of Samp	led Data Systems, P	rentice Hall	
3	Publications. Nagarath I. J. and Gopal M., Control Syste	Engineering Wi	lay Eastarn 20	000
4				008.
5		-		2010
	ok (Approved for use in the examination)		, itew Denn, z	2010.
Reference		•		
	. Alberto Isidori, Nonlinear Control System	ns Springer Verlag	1995	
	. Gibson J. E., F.B. Tuteur and J. R. Rag			ents Tata
2	McGraw Hill, 2013		stem compon	ento, 1 ata
	. Gopal M., Control Systems Principles and	Design Tata McG	raw Hill 2009	2
_				
4	. Jean-Jacques E. Slotine & Weiping Li,	Applied Nollillear	Control, Flen	uce-пап.,
	NJ, 1991.			
	Course	Plan	2	0
Module	Contents		Hours	Sem. Exam Marks
	Types of controller- Feedforward-feedba	ck-cascade-P, PI a	nd	
Ι	PID. Compensator design: Realization of	compensators – 1	ag, 7	15%
1	lead and lag-lead -Design of compensator u	sing bode plot.	/	1370
	Compensator design: Realization of comp			
II	and lag-lead. Design of compensator using	rootlocus. Design of	of 7	15%
	P, PI and PID controller using Ziegler-Nich			
	FIRST INTERNAL EX	AMINATION		
	State space analysis of systems: Introduct			
III	state equation of linear continuous ti			15%
111	representation of state equations. Phase v		cal	1.5 /0
	forms of state representation-controllable,	observable, diagon	nal	

	and Jordan canonical forms- solution of time invariant		
	autonomous systems, forced system-state transition matrix-		
	relationship between state equations and transfer function. Properties of state transition matrix-Computation of state		
	transition matrix using Laplace transform-Cayley-Hamilton		
	method. Conversion from canonical form to phase variable form.		
	State feedback controller design: Controllability & observability.		
	State feed-back design via pole placement technique.	_	
117	Sampled data control system: Pulse Transfer function-Stability of	7	15%
IV	sampled data system -Routh Hurwitz criterion and Jury's test.	<u> </u>	15%
	Introduction to state-space representation of sampled data	- C	
	systems.		
	SECOND INTERNAL EXAMINATION		
	Nonlinear systems: Introduction - characteristics of nonlinear		
	systems. Types of nonlinearities. Analysis through harmonic		20%
V	linearisation - Determination of describing function of	7 hrs	
	nonlinearities (relay, dead zone and saturation only) - application		
	of describing function for stability analysis of autonomous		
	system with single nonlinearity. Phase Plane Analysis: Concepts- Construction of phase		
	trajectories for nonlinear systems and linear systems with static		
	nonlinearities - Singular points – Classification of singular		
VI	points. Definition of stability- asymptotic stability and instability	7 hrs	20%
	Liapunov methods to stability of linear and nonlinear, continuous		
	time systems.		
	END SEMESTER EXAM		

Estd

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course co	ode Course Name	L-T-P -Credits	Year Introdu	
EE305	Power Electronics	3-0-0-3	201	6
Prerequis	ite: Nil			
Course O	bjectives			
	get an overview of different types of pow racteristics	ver semiconductor devices	and their s	witching
	study the operation and characteristics of y	various types of power electronic	etronic conv	verters
controlled switching	and characteristics of various power so rectifiers – inverters – AC voltage contr regulators			
Expected		CITV		
	nts who successfully complete this course			
	loose appropriate power semiconductor de	vice in converter circuits a	nd develop	their
	ggering circuits.			
	alyze various types of power electronic co	onverters and apply differe	nt switchin	g
	hniques.			
	lect appropriate power converter for specif			
iv. Int	erpret and use datasheets of power semico	inductor devices for design		
Text Doc	Muhammad H. Rashid, <i>Power Electronic</i> Education	s Circuits, Devices and Ap	plications,	Pearson
Reference				
2. K 3. F	Aohan N., T. M. Undeland and W. P. Robb Applications & Design, Wiley-India Krein P. T., Elements of Power Electronics S. Bimbhra, Power Electronics, Khanna F	, Oxford University Press, Publishers, New Delhi	1998.	
	Umanand, Power Electronics – Essential			
	hingh M. D. and K. B. Khanchandani, I	Power Electronics, Tata	McGraw H	III, New
L	Delhi, 2008.	-		
	Course	e Plan		Sam
Module	Contents		Hours	Sem. Exam Marks
I	SCR-Structure, static characteristics & s off) characteristics - di/dt & dv/dt protec SCR - two transistor analogy - series a SCRs Structure and principle of operation of po Power MOSFET & IGBT – Comparison	ction – turn-on methods of and parallel connection of	6	15%
II	Gate triggering circuits – R, RC, U natural and forced commutation (concep isolation and synchronisation in gate c pulse transformer based isolation. Controlled rectifiers – half-wave contro – 1-phase fully controlled bridge rectifi- loads (continuous & discontinuous cond	t only). Requirements of hrive circuits- Opto and lled rectifier with R load er with R, RL and RLE	8	15%

	aquation 1 phase half controlled buildes reactifier with D DI and		
	equation – 1-phase half controlled bridge rectifier with R, RL and		
	RLE loads – displacement power factor – distortion factor.		
	FIRST INTERNAL EXAMINATION		
ш	3-phase half-wave controlled rectifier with R load – 3-phase fully controlled & half-controlled converter with RLE load (continuous conduction, ripple free) – output voltage equation-waveforms for various triggering angles (no analysis) – 1-phase & 3-phase dual converter with & without circulating current – four-quadrant operation	7	15%
IV	Inverters – voltage source inverters– 1-phase half-bridge & full bridge inverter with R & RL loads – THD in output voltage – 3- phase bridge inverter with R load – 120° & 180° conduction mode – current source inverters.	7	15%
	SECOND INTERNAL EXAMINATION		
V	 Voltage control in inverters – Pulse Width Modulation – single pulse width, multiple pulse width & sine PWM – modulation index & frequency modulation ratio. AC voltage controllers (ACVC) – 1-phase full-wave ACVC with R, & RL loads – waveforms – RMS output voltage, input power factor with R load – sequence control (two stage) with R load 	7	20%
VI	DC-DC converters – step down and step up choppers – single- quadrant, two-quadrant & four quadrant chopper – pulse width modulation & current limit control in dc-dc converters. Switching regulators – buck, boost & buck-boost - continuous conduction mode only – waveforms – design of filter inductance & capacitance	7	20%
	END SEMESTER EXAM		

Estd

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Module I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course co		-T-P - redits		Year of roduction
EE306		0-0-3		2016
Prerequisi	te: Nil			
Course Ob	•			
•	To enable the students to analyse power systems under norr	nal and	abnorn	nal
	conditions. To understand the need for load flow analysis and different	mathad	9	
•	To understand power system modeling	memou	5	
•	To understand the need for stability studies and their analys	is		
Syllabus	TECHNOLOGIC	ΔT		
	antities - modeling of power system components - method			
	al and unsymmetrical case - load flow studies - Automa voltage control – Economic load dispatch - Unit commitment			
	swing equation - Methods of improving stability limits	- rowe	i syster	in stability -
	outcome .			
The studen	ts will be able to:			
i.	Jac Prove San and San and San and San and San and San			
ii. Referenc	,	tions		
	ton H. and H. Barber, Transmission & Distribution of Electrica	al Energ	y, 3/e,	Hodder and
	ughton, 1978.	C		
2. Gup	ota B. R., <i>Power System Analysis and Design</i> , S. Chand, New De	elhi, 200	6.	
3. Gup	ota J.B., Transmission & Distribution of Electrical Power, S.K. H	Kataria &	& Sons,	2009.
4. Hac	li Saadat, <i>Power System Analysis</i> , 2/e, McGraw Hill, 2002.			
5. Kot	hari D. P. and I. J. Nagrath, <i>Modern Power System Analysis</i> , 2/e,	TMH, 2	2009.	
6. Kur	ndur P., Power system Stability and Control, McGraw Hill, 199			
	i, M.L., P. V. Gupta and U. S. Bhatnagar, <i>A Course in Electric</i> s, New Delhi, 1984.	cal Pow	er, Dha	anpat Rai &
8. Stev	venson W. D., Elements of Power System Analysis, 4/e, McGraw	Hill, 19	82.	
9. Upp	oal S. L. and S. Rao, <i>Electrical Power Systems</i> , Khanna Publishe	rs, 2009		
10. Wao	lhwa C. L., <i>Electrical Power Systems</i> , 33/e, New Age Internation	nal, 2004	4.	
	edy B. M., B. J. Cory, N. Jenkins, J. B. Ekanayake and G. Strb n Wiley & Sons, 2012.	ac, <i>Elec</i>	tric Po	wer System,
	Course Plan			
Module	Contents	Н	ours	Sem. Exam Marks
	Per unit quantities-single phase and three phase-selection			
	base quantities -advantages of per unit system –changing t	the	2	
I	base of per unit quantities-Simple problems. Modelling of power system components - single line diagram	n		
	per unit quantities. Symmetrical components- sequer		0	15%
	impedances and sequence networks of generators, transformed		3	1.5 /0
	and transmission lines.			
тт	Methods of analyzing faults in symmetrical and unsymmetric			
II	case- effects of faults - Power system faults - symmetric faults - short circuit MVA - current limiting reacto		8	15%
	inverse short encart in the current initialing foucto			1.5 /0

	Unsymmetrical faults - single line to ground, line to line, double line to ground faults -consideration of prefault current- problems.		
	FIRST INTERNAL EXAMINATION		
ш	Load flow studies – Introduction-types-network model formulation - formation of bus impedance and admittance matrix, Gauss-Siedel (two iterations), Newton-Raphson (Qualitative analysis only) and Fast Decoupled method (two iterations) - principle of DC load flow.	8	15%
IV	Automatic Generation Control: Load frequency control: single area and two area systems - Automatic voltage control.	6	15%
	SECOND INTERNAL EXAMINATION		
V	Economic Operation - Distribution of load between units within a plant - transmission loss as a function of plant generation - distribution of load between plants - Method of computing penalty factors and loss coefficients.	5	20%
	Unit commitment: Introduction — Constraints on unit commitments: Spinning reserve, Thermal unit constraints- Hydro constraints	2	
	Power system stability - steady state, dynamic and transient stability-power angle curve-steady state stability limit	3	
VI	Mechanics of angular motion-Swing equation – Solution of swing equation - Point by Point method - RK method - Equal area criterion application - Methods of improving stability limits.	5	20%

Est

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course co	de Course Name L-T-P - Credits	Year of Int	roduction
EE307	SIGNAL AND SYSTEMS 3-0-0-3	201	16
Prerequis	ite: Nil		
Course O	bjectives		
•	To impart knowledge about the representation and properties of	signal and s	ystems and
	applications in engineering		•
Syllabus:	THEFT		
Classifica	ion of signals - Basic operations on signals- properties of	systems- C	onvolution-
	ansform-applications-Fourier series and Fourier transforms- pr		
-	mpling- ZT-properties-applications- DFS-DFT-properties-Basic	s of Nonline	ar systems
-	Outcome:		
After the o	completion of the course student will be able to:		
i.	Represent various signals and systems		
ii.	Analyse the continuous time system with Laplace transform		
iii.	Represent and analyse signals using Fourier representation		
iv.	Analyse the discrete time system using ZT		
V.	Analyse the DT systems with DFS		
vi. Text bool	Acquire basic knowledge in nonlinear systems		
	ykin S. & Veen B.V., Signals & Systems, John Wiley		
	penheim A.V., Willsky A.S. & Nawab S.H., Signals and System	s Tata McG	raw Hill
	nals and Systems: I J Nagrarth- Tata McGraw Hill	is, Tata Med	law IIII
Reference		11	
	acewell R.N., Fourier Transform & Its Applications, McGraw Hi rooq Husain, Signals and Systems, Umesh pub.	.11	
	booulis A., Fourier Integral & Its Applications, McGraw Hill		
	ylor F.H., Principles of Signals & Systems, McGraw Hill		
т . 1а	yior 1.11., 1 metples of Signals & Systems, we of aw 11m		
	Course Plan		
	Course Plan	1	Som
Module	Esta.	Hours	Sem. Exam
Module	Course Plan Contents	Hours	Exam
Module	Contents		
Module	Contents Introduction to signals and systems - Classification of signals -	Hours 7	Exam
	Contents Introduction to signals and systems - Classification of signals - Basic operations on signals – Elementary signals –		Exam
Module	Contents Introduction to signals and systems - Classification of signals - Basic operations on signals – Elementary signals – Concept of system - Properties of systems - Stability,		Exam
	Contents Introduction to signals and systems - Classification of signals - Basic operations on signals – Elementary signals – Concept of system - Properties of systems - Stability, inevitability- time invariance- Linearity -Causality – Memory-		Exam
	Contents Introduction to signals and systems - Classification of signals - Basic operations on signals – Elementary signals – Concept of system - Properties of systems - Stability,		Exam
	Contents Introduction to signals and systems - Classification of signals - Basic operations on signals – Elementary signals – Concept of system - Properties of systems - Stability, inevitability- time invariance- Linearity -Causality – Memory- Convolution- Impulse response- Representation of LTI		Exam Marks
I	Contents Introduction to signals and systems - Classification of signals - Basic operations on signals – Elementary signals – Concept of system - Properties of systems - Stability, inevitability- time invariance- Linearity -Causality – Memory- Convolution- Impulse response- Representation of LTI systems - Differential equation representations of LTI systems	7	Exam Marks
	Contents Introduction to signals and systems - Classification of signals - Basic operations on signals – Elementary signals – Concept of system - Properties of systems - Stability, inevitability- time invariance- Linearity -Causality – Memory- Convolution- Impulse response- Representation of LTI systems - Differential equation representations of LTI systems Laplace transform analysis of systems - Relation between the	7	Exam Marks
I	Contents Introduction to signals and systems - Classification of signals - Basic operations on signals – Elementary signals – Concept of system - Properties of systems - Stability, inevitability- time invariance- Linearity -Causality – Memory- Convolution- Impulse response- Representation of LTI systems - Differential equation representations of LTI systems Laplace transform analysis of systems - Relation between the transfer function and differential equation –Causality and	7	Exam Marks
I	Contents Introduction to signals and systems - Classification of signals - Basic operations on signals – Elementary signals – Concept of system - Properties of systems - Stability, inevitability- time invariance- Linearity -Causality – Memory- Convolution- Impulse response- Representation of LTI systems - Differential equation representations of LTI systems Laplace transform analysis of systems - Relation between the transfer function and differential equation –Causality and stability - Inverse system - Determining the time domain and	7	Exam Marks

	Series-Harmonic analysis of common signals-			
	Fourier transform - Existence -properties of FT- Energy			
	spectral density and power spectral density - Frequency			
	response of LTI systems -			
	Sampled data systems- Sampling process-sampling theorem-	7	15%	
IV	signal re construction- Zero order and First order hold circuits- Difference equation representations of LTI systems -	NЛ		
1,	Discrete form of special functions- Discrete convolution and its properties			
	SECOND INTERNAL EXAMINATION	AL		
	Z Transform - Region of convergence- Properties of the Z	7	20%	
	transform –			
V	Inverse ZT-methods			
	Z-transfer function- Analysis of difference equation of LTI			
	systems – Basic idea on Stability and causality conditions-			
	Fourier representation of discrete time signals - Discrete	7	20%	
	Fourier series-properties- Frequency response of simple DT			
VI	systems			
	Basics of Non linear systems-types and properties			
	Introduction to random signals and processes (concepts only)			
END SEMESTER EXAM				

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Module I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course co	de Course Name	L-T-P-Credits	Yea Introd	
EE308	Electric Drives	3-0-0-3	20	
Prerequis	ite: EE202 & EE205			
• T	bjectives To provide fundamental knowledge in dyna To justify the selection of Drives for various To familiarize the various semiconductor co	s applications.		
Fundamen controlled	tals of dynamics and control of electric rectifiers — chopper controlled dc motor speed control – VSI and CSI fe	drives – ac voltage contro	ollers – th	ree phase
Expected	outcome.	RSILY		
T	he students will be able to select a	drive for a particular app	olication. '	They will
	with the various control techniques	employed for controlling dr	ives with	ac and dc
motors.				
Text book				202
	Simal K. Bose "Modern power electronics a			
	Oubey G. K. "Power semiconductor con ersey, 1989	utor drives Prentice Hall, En	glewood C	mis, new
Referenc			-	
	wan S.B., G. R. Slemon, A. Strauvhen, "Po	ower semiconductor drives". Jo	hn Wilev a	nd sons
	P. S. Bimbra "Power electronics", Khanna		5	
	A. D. Murphy "Thyristor control of AC dri			
	K. De, P. K. Sen "Electric drives" Prentice			
	d Mohan, Tore m Undeland, William P Ro	obbins, "Power electronics conv	erters appli	cations and
	ign", John Wiley and Sons. ai S. K. "A first course on electric drives",	Wieley Fastern I td. New Delh	i	
	dam Subrahmanyam, "Electric Drives", M			
	Shepherd, L. N. Hulley and D. T. Lian			l", Second
	tion, Cambridge University Press, 1995.			,
	Cou	urse Plan		
Module	Contents		Hours	Sem. Exam Marks
I	Introduction to electric drives – Block dia drives – Dynamics of motor load system types of load – classification of load torq drives. Steady state stability. Introduction drives.	n, fundamental equations, and ue, four quadrant operation of	7	15%
II	DC motor drives- constant torque and separately excited dc motor drives usin phase semi converter and single phase ful Three phase semi converter and fully con converters, applications of dual conver motor. Closed loop control of separately series motor drive for traction application	g controlled rectifiers, single lly controlled converter drives. ntrolled converter drives. Dual ter for speed control of DC y excited dc motor drive. DC	7	15%
	FIRST INTERNAI			

III	 Chopper controlled DC drives. Analysis of single quadrant chopper drives. Regenerative braking control. Two quadrant chopper drives. Four quadrant chopper drives. Cycloconverters for drive applications – different types – basic principle. 	7	15%
IV	Three phase induction motor speed control. Using semiconductor devices. Stator voltage control – stator frequency control - Stator voltage and frequency control (v/f). Rotor chopper speed control - slip power recovery control schemes – sub synchronous and super synchronous speed variations.	7	15%
V	SECOND INTERNAL EXAMINATION Voltage source inverter fed induction motor drives, Current source inverter fed induction motor drives. Concept of space vector – Basic transformation in reference frame theory – field orientation principle.	7	20%
VI	Synchronous motor drives – introduction to v/f control. Permanent Magnet synchronous motor drives – different types – control requirements, converter circuits, modes of operation. Microcontroller based permanent magnet synchronous motor drives (schematic only).	7	20%
	END SEMESTER EXAM		

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

EE 309		Course Name	L-T-P-Credits	Year o	<u>n murou</u>	uction
) M	icroprocessor and Embedded Systems	3-0-0-3		2016	
Course O	•	s	1			
	-	a strong foundation about the pr		and vari	ious appl	ications
		t microprocessors and microcontr	collers			
Syllabus:			· a			
		re, instruction set, assembly langu				
		bly language of 8085 and 8051 m	hicrocontroller-internal	architec	cture,	
Expected		be able to:	DOID	- 1	1	
		fundamentals of assembly level p	rogramming of 8085	A		
		essor and 8051 microcontroller	or of the second s	21.1	des.	
		standard microprocessor rreal tin	ne interfaces			
		till for writing C programs for805				
		oprocessors/microcontrollers-bas				
	Ū	-				
Text book				11 5 1		
		Hall, Microprocessors and Interfa				ew
		Introduction to Microprocessors,	,			
		III Mazidi, Janice Gillispie Mazic			a	
		ystems using Assembly and C", s an, Microprocessor Theory and A			t Edition	7
	-	onkar, Microprocessor, Architectu	1	U		
		nd Burchandi, Advanced Microp				mann
•	•••	-	rocessor a renpherat	, I ala IVI	CUTTAW/	
	, Luucui	ion New Delhi Second Edition			cGraw	
	tt MacK	ion, New Delhi, Second Edition. enzie, Raphael C W Phan."The80	051Microcontroller". F			
Pea		enzie, <mark>Raphael C W Phan,"The8</mark> (ourth Ec		
	rson edu			ourth Ec		
	rson edu	enzie, Raphael C W Phan,"Th <mark>e8</mark> (cation <mark>Delhi</mark> , Third Edition. /P <mark>re</mark> r		ourth Ec		
	rson edu	enzie, Raphael C W Phan,"Th <mark>e8</mark> (cation <mark>Delhi</mark> , Third Edition. /P <mark>re</mark> r		ourth Ec		
	rson edu	enzie, Raphael C W Phan,"The80 cation Delhi, Third Edition. /Pren Sixth edition,2014.		ourth Ec		
Pub	rson edu	enzie, Raphael C W Phan,"The80 cation Delhi, Third Edition. /Pren Sixth edition,2014. Cour	ntice hall of India Inter	ourth Ec	lition,	End
Pub	rson edu	enzie, Raphael C W Phan,"The80 cation Delhi, Third Edition. /Pren Sixth edition,2014.	ntice hall of India Inter	ourth Ec		Sem
Pub	rson edu	enzie, Raphael C W Phan,"The80 cation Delhi, Third Edition. /Pren Sixth edition,2014. Cour	ntice hall of India Inter	ourth Ec	lition,	Sem Exan
Pub	rson edu lishing;	enzie, Raphael C W Phan,"The80 cation Delhi, Third Edition. /Pren Sixth edition,2014. Cour	ntice hall of India Inter	ourth Ec	lition,	Sem Exan
	rson edu blishing;	enzie, Raphael C W Phan,"The80 cation Delhi, Third Edition. /Pren Sixth edition,2014. Cour Contents	ssor–Instructionset-	Fourth Econational	lition,	Sem Exan
Pub Module	rson edu lishing; Interna Addres	enzie, Raphael C W Phan,"The80 cation Delhi, Third Edition. /Prer Sixth edition,2014. Cour Contents I architecture of 8085 microproce sing modes–Classification of ins	sePlan 	Fourth Econational	lition, Hours	Sem Exar Marł
Pub	Interna Addres prograf	enzie, Raphael C W Phan,"The80 cation Delhi, Third Edition. /Prer Sixth edition,2014. Cour Contents I architecture of 8085 microproce sing modes–Classification of ins nming–standard programs in	rsePlan rsePlan cssor–Instructionset- tructions. Assembly la assembly languag	Fourth Econational	lition,	Sem Exan Mark
Pub Module	Interna Addres prograu	enzie, Raphael C W Phan,"The80 cation Delhi, Third Edition. /Prer Sixth edition,2014. Cour Contents I architecture of 8085 microproce sing modes–Classification of ins	rsePlan rsePlan cssor–Instructionset- tructions. Assembly la assembly languag	Fourth Econational	lition, Hours	Sem Exan Mark
Pub Module	Interna Addres progran convers	enzie, Raphael C W Phan,"The80 cation Delhi, Third Edition. /Prer Sixth edition,2014. Cour Contents l architecture of 8085 microproce sing modes–Classification of ins nming–standard programs in sion, sorting–binary and BCD ari	sePlan sePlan cssor–Instructionset- tructions. Assembly la assembly languag thmetic.	Fourth Econational	lition, Hours	Sem Exan Mark
Pub Module	Interna Addres progran convers	enzie, Raphael C W Phan, "The80 cation Delhi, Third Edition. /Pren Sixth edition,2014. Cour Cour Contents I architecture of 8085 microproce sing modes–Classification of ins nming–standard programs in sion, sorting–binary and BCD ari nd Subroutines–CALL and RETU	rsePlan essor–Instructionset- tructions. Assembly languag thmetic.	Fourth Econational	lition, Hours	Sem Exan Mark
Pub Module I	Interna Addres prograt convers Stack a Delay	enzie, Raphael C W Phan, "The80 cation Delhi, Third Edition. /Pren Sixth edition,2014. Cour Contents I architecture of 8085 microproce sing modes–Classification of ins nming–standard programs in sion, sorting–binary and BCD ari nd Subroutines–CALL and RETU subroutines. Timing and control	rsePlan rsePlan cssor–Instructionset- tructions. Assembly languag thmetic. URN instructions– Machine cycles, inst	Fourth Econational	lition, Hours 7	Sem Exan Mark
Pub Module	Interna Addres prograt convers Stack a Delay cycle a	enzie, Raphael C W Phan, "The80 cation Delhi, Third Edition. /Prer Sixth edition,2014. Cour Contents I architecture of 8085 microproce sing modes–Classification of ins nming–standard programs in sion, sorting–binary and BCD ari nd Subroutines–CALL and RETU subroutines. Timing and control und T states–fetch and execute	rsePlan rsePlan cssor–Instructionset- tructions. Assembly languag thmetic. URN instructions– Machine cycles, inst	Fourth Econational	lition, Hours	End Sem. Exan Mark 159
Pub Module	Interna Addres prograt convers Stack a Delay	enzie, Raphael C W Phan, "The80 cation Delhi, Third Edition. /Prer Sixth edition,2014. Cour Contents I architecture of 8085 microproce sing modes–Classification of ins nming–standard programs in sion, sorting–binary and BCD ari nd Subroutines–CALL and RETU subroutines. Timing and control und T states–fetch and execute	rsePlan rsePlan cssor–Instructionset- tructions. Assembly languag thmetic. URN instructions– Machine cycles, inst	Fourth Econational	lition, Hours 7	Sem Exar Marl

FIRSTINTERNALEXAMINATION

III	IO and memory interfacing –Address decoding–interrupt Structure of 8085.I/O ports – Programmable peripheral interface PPI8255 -Modes of operation. Interfacing of LEDs, ADC and DAC with 8085	7	15%
IV	Introduction to Embedded Systems-Application domain of embedded systems, features and characteristics, System model, Microprocessor Vs Microcontroller, current trends and challenges, hard and soft real time systems, Embedded product development, Life Cycle Management (water fall model), Tool Chain System, Assemblers, Compilers, linkers, Loaders, Debuggers Profilers & Test Coverage Tools	√l7 L	15%
	SECONDINTERNALEXAMINATION		
V	8051- Microcontrollers Hardware: Microcontroller Architecture: IO Port structure, Register organization, general purpose RAM, Bit Addressable RAM, Special Function Registers (SFRs). Instruction Set, addressing modes Instruction Types.	7	20%
VI	8051- assembly language programming, data types and directives, Time delay and I/O port programming, Embedded Programming in C, data type and time delay in C, I/O port programming, Timer / counter programming, serial port programming, Interfacing – LCD, ADC, Stepper motor, and DAC.	7	20%
	ENDSEMESTER EXAM		

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Module I - IV; and two each from Module V & VI. Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course code	Course Name	L-T-P - Credits	Year of Introduction
EE331	Digital Circuits and Embedded Systems Lab	0-0-3-1	2016
Prerequisite: H	EE309 Microprocessor and embedded systems		
Course Object	ives		
• To impa	art practical experience in the design and setup of digit	tal circuits and	d embedded
systems	DI LODITI IZIT	A A 4	
List of Exercis	es/Experiments : (Out of 18 experiments listed, 12 ex	xperiments are	e mandatory.)
 Half 4-bit BCD Study Study Desig Study 	sation of SOP & POS functions after K map reduction adder & Full adder realization using NAND gates adder/subtractor & BCD adder using IC 7483 to decimal decoder and BCD to 7-segment decoder & disp of multiplexer IC and Realization of combinational circui of counter ICs (7490, 7493) gn of synchronous up, down & modulo N counters of shift register IC 7495, ring counter and Johnsons count L implementation of full adder, 4 bit magnitude comparato	ts using multip er	lexers.
EMBEDDED S	YSTEM EXPERIMENTS: (Out of first six, any two exp	parimonte usin	a 8085 and any
	Out of the last 3 experiments, any two experiments usi		
	re platforms like PIC, Arduino, MSP430, ARM etc) (at		
mandatory)			
	transfer instructions using different addressing modes and		
	hmetic operations in binary and BCD-addition, subtraction ical instructions- sorting of arrays in ascending and descended	•	and division
U U	ary to BCD conversion and vice versa.	ung order	
	facing D/A converter- generation of simple waveforms-tria	angular wave r	amp etc.
	facing A/D converter	angular wave, i	ump ete
	are wave generation.		
·	and LCD display interfacing		
	or control ESTO.		
Expected outc	ome.		
The students w			
i. desi	gn, setup and analyse various digital circuits.		

ii. design an embedded system for a particular application

Course c	code Course Name	L-T-P -	Year of
		Credits	Introduction
EE33	2 Systems and Control laborat	ory 0-0-3-1	2016
Prerequi	isite: EE303 Linear control systems	·	
Course (Dbjectives		
• T	o develop mathematical models for electric	al systems, analyse the s	ystems and
in	nplement compensators for systems based	on system performance.	
List of E	xperiments:		
1. Pr	redetermination and verification of frequency re	esponse characteristics of L	ag and Lead networks.
2. Ti	ransfer Function of AC and DC servomotors	NALAI	V I
	tep and frequency response of R-L-C circuit	ADICA	T.
	tudy of P, PI and PID controllers. Response ana	lysis of a typical system w	ith different controllers
	sing process control simulator.	CITAL	. And
	tudy of performance characteristics and response	e analysis of a typical temp	perature/ Flow/ Level
	ontrol system.		
	IATLAB: Use of control system Tool box for th	e Time domain and freque	ency domain methods o
	vstem analysis and design		
	MULINK: Simulation and control of real time		
	ompensator design using Bode plot with MATI imple experiments using Programmable Logic (
	procept of latching, experiments with timers and		
	tudy of various types of synchros (TX, TR & TI	e	0
	ansmission using TX-T R pair. Effect of TDX i		isinition, data
	ealization of Lag & lead compensator using act		
	culturion of Euglee feue compensator using uct	ive components	
End exan	nination shall be based on design of a c <mark>o</mark> ntrol	ler for the given system	
	Dutcome:		
	cessful completion of this course, students		
	evelop mathematical models for servomoto	-	vstems
2. Pe	erformance analysis of different process co	ntrol systems	
2 D	erformance analysis of different types of co	ntrollers	

- Performance analysis of different types of controllers
 Use MATLAB and SIMULINK to design and analyze simple systems and compensators

Course code	Course Name	L-T-P - Credits	Year of Introduction
EE333	Electrical Machines Lab II	0-0-3-1	2016
Prerequisite: H	EE202 Synchronous and induction machines		
Course Object	ives		
U	ve hands on experience in testing Alternators, Three phase and	l Single phas	se Induction
	rs and induction generators	AK	4
List of Exercise	S/Experiments.	AN	1
1. Regulation of <i>Objectives:</i>	alternator by direct loading	A	r i
	ine the regulation of three phase alternator	SUL.	
	regulation vs load curve	1	
2. Regulation of <i>Objectives:</i>	three phase alternator by emf and mmf methods		
	ine the regulation of alternator by emf and mmf method		
-	alternator by Potier and ASA methods		
<i>Objectives</i> :			
	onize the alternator by dark lamp method F characteristics and determine armature reactance mmf and p	otier reactan	Ce
	rmine the regulation by ZPF method	otter reactain	
	rmine the regulation by ASA method		
-	alternator by Potier method using inductive load		
Objectives:			
	F characteristics using a variable inductive load		
	mine the regulation by ZPF method salient pole alternator using two reaction theory		
Objectives:	salient pole alternator using two reaction theory		
U U	ine the direct and quadrature axis reactances.		
	rmine the regulation of alternator		
	active power control in grid connected alternators		
Objectives:	prize the alternator by bright lamp method		
	onize the alternator by bright lamp method the active and reactive power		
	v-curve and inverted v curve for generator operation		
7. Study of induc	ction motor starters ESIC.		
Objectives:			
	induction motor using star delta starter and determine the start	ing current	
	dynamic characteristic during IM starting tarting torque with rotor resistance in slip-ring induction motor	·s	
Objectives:	and the conque with rotor resistance in sup ring induction motor	5	
	variation of starting torque against rotor resistance in a three p	hase slip rir	ng induction
motor			
	e external rotor resistance for which maximum starting torque	is obtained.	
Objectives:	of slip ring induction motor by varying rotor resistance		
	s slip ring induction motor with constant load torque		
	variation of speed against change in rotor resistance three phase squirrel cage induction motor		
Objectives:	and phase squarer cape induction motor		
U	e motor using star delta starter		
b) Plot eff	iciency, line current and power factor against output power		
	three slip ring induction motor		
Objectives:	a motor using auto transformer or rotor registence starter		
a) Start th	e motor using auto transformer or rotor resistance starter		

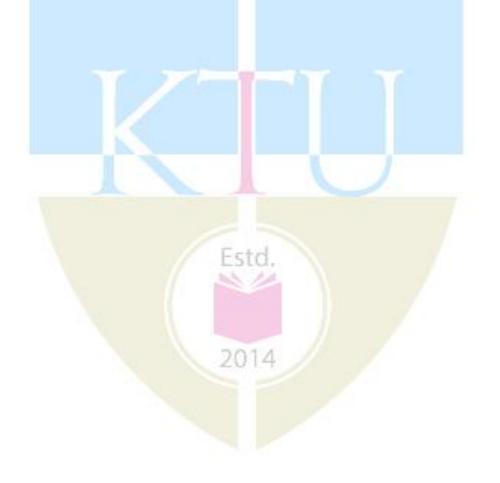
 2. No load and block rotor test on three phase induction motor Objectives: a) Predetermination of performance characteristics from circle diagram b) Determination of equivalent circuit 3. Performance characteristics of pole changing induction motor Objectives: a) Run the motor in two different pole combinations (example 4 pole and 8 pole) b) Determine the performance in the two cases and compare 4. V curve of a synchronous motor Objectives: a) Run the motor in two different load conditions b) Determine v-curve for each load conditions b) Determine v-curve for each load condition 5. Performance characteristics of the generator Objective: a) Run the induction generator with a dc motor prime mover. c) Plot the performance characteristics of the generator 6. Equivalent circuit of single phase induction motor Objectives: a) Conduct no load and blocked tor test on the motor c) Find the equivalent circuit 7. Electrical braking of slip ring induction motor Objective: a) Dynamic braking b) Plot the speed variations at different conditions 8. Separation of hysteresis loss in a three phase slip ring induction motor Objective: Determine the hysteresis loss in a slip ring induction motor Objective: Determine the successful completion of the course, the students will be able to test and validate DC generators, DC motors and transformers 	1) Dist officiences line comment on income forther
Objectives: a) Predetermination of performance characteristics from circle diagram b) Determination of equivalent circuit 3) Performance characteristics of pole changing induction motor Objectives: a) Run the motor in two different pole combinations (example 4 pole and 8 pole) b) Determine the performance in the two cases and compare 4. V curve of a synchronous motor Objectives: a) Run the motor in two different load conditions b) Determine v-curve for each load conditions b) Determine v-curve for each load condition 5. Performance characteristics of induction generator Objective: a) Run the induction generator with a de motor prime mover. c) Plot the performance characteristics of the generator Objectives: a) Conduct no load and blocked tor test on the motor c) Find the equivalent circuit 7. Electrical braking of slip ring induction motor Objectives: a) Dynamic braking b) Plot the speed variations at different conditions 8. Separation of hysteresis loss in a three phase slip ring induction motor Objective: Determine the hysteresis loss in a slip ring induction motor Objective: De	b) Plot efficiency, line current and power factor against output power
 a) Predetermination of performance characteristics from circle diagram b) Determination of equivalent circuit 3. Performance characteristics of pole changing induction motor <i>Objectives:</i> a) Run the motor in two different pole combinations (example 4 pole and 8 pole) b) Determine the performance in the two cases and compare 4. V curve of a synchronous motor <i>Objectives:</i> a) Run the motor in two different load conditions b) Determine the verve for each load conditions b) Determine v-curve for each load condition 5. Performance characteristics of induction generator <i>Objective:</i> a) Run the induction generator with a dc motor prime mover. c) Plot the performance characteristics of the generator 6. Equivalent circuit of single phase induction motor <i>Objectives:</i> a) Conduct no load and blocked tor test on the motor c) Find the equivalent circuit 7. Electrical braking of slip ring induction motor <i>Objectives:</i> a) Dynamic braking b) Plot the speed variations at different conditions 8. Separation of hysteresis loss in a three phase slip ring induction motor <i>Objective:</i> Determine the hysteresis loss in a slip ring induction motor Objective: Determine the successful completion of the course, the students will be able to test and validate DC generators, DC motors and transformers 	*
 b) Determination of equivalent circuit 3. Performance characteristics of pole changing induction motor <i>Objectives:</i> a) Run the motor in two different pole combinations (example 4 pole and 8 pole) b) Determine the performance in the two cases and compare 4. V curve of a synchronous motor <i>Objectives:</i> a) Run the motor in two different load conditions b) Determine v-curve for each load condition 5. Performance characteristics of induction generator <i>Objective:</i> a) Run the induction generator with a dc motor prime mover. c) Plot the performance characteristics of the generator 6. Equivalent circuit of single phase induction motor <i>Objectives:</i> a) Conduct no load and blocked tor test on the motor c) Find the equivalent circuit 7. Electrical braking of slip ring induction motor <i>Objectives:</i> a) Dynamic braking b) Plot the speed variations at different conditions 8. Separation of hysteresis loss in a slip ring induction motor <i>Objective:</i> Determine the hysteresis loss in a slip ring induction motor 6. Determine the hysteresis loss in a slip ring induction motor Objective: Dott of the above experiments, minimum twelve experiments should be done. 	
 3. Performance characteristics of pole changing induction motor <i>Objectives:</i> a) Run the motor in two different pole combinations (example 4 pole and 8 pole) b) Determine the performance in the two cases and compare 4. V curve of a synchronous motor <i>Objectives:</i> a) Run the motor in two different load conditions b) Determine v-curve for each load conditions b) Determine v-curve for each load condition 5. Performance characteristics of induction generator <i>Objective:</i> a) Run the induction generator with a dc motor prime mover. c) Plot the performance characteristics of the generator 6. Equivalent circuit of single phase induction motor <i>Objectives:</i> a) Conduct no load and blocked tor test on the motor c) Find the equivalent circuit 7. Electrical braking of slip ring induction motor <i>Objectives:</i> a) Dynamic braking b) Plot the speed variations at different conditions 8. Separation of hysteresis loss in a slip ring induction motor <i>Objective:</i> Determine the hysteresis loss in a slip ring induction motor <i>Objective:</i> Determine the hysteresis loss in a slip ring induction motor <i>Objective:</i> Determine the hysteresis loss in a slip ring induction motor <i>Objective:</i> Determine the hysteresis loss in a slip ring induction motor <i>Objective:</i> Determine the hysteresis loss in a slip ring induction motor <i>Objective:</i> Determine the hysteresis loss in a slip ring induction motor <i>Objective:</i> Determine the successful completion of the course, the students will be able to test and validate DC generators, DC motors and transformers 	
Objectives: a) Run the motor in two different pole combinations (example 4 pole and 8 pole) b) Determine the performance in the two cases and compare 4. V curve of a synchronous motor Objectives: a) Run the motor in two different load conditions b) Determine v-curve for each load conditions b) Determine v-curve for each load condition 5. Performance characteristics of induction generator Objective: a) Run the induction generator with a dc motor prime mover. c) Plot the performance characteristics of the generator 6. Equivalent circuit of single phase induction motor Objectives: a) Conduct no load and blocked tor test on the motor c) Find the equivalent circuit 7. Electrical braking of slip ring induction motor Objectives: a) Dynamic braking b) Plot the speed variations at different conditions 8. Separation of hysteresis loss in a slip ring induction motor Objective: Determine the hysteresis loss in a slip ring induction motor Objective: Determine the hysteresis loss in a slip ring induction motor Objective: Determine the hysteresis loss in a slip ring induction motor Objective: <td></td>	
 a) Run the motor in two different pole combinations (example 4 pole and 8 pole) b) Determine the performance in the two cases and compare 4. V curve of a synchronous motor <i>Objectives:</i> a) Run the motor in two different load conditions b) Determine v-curve for each load condition 5. Performance characteristics of induction generator <i>Objective:</i> a) Run the induction generator with a dc motor prime mover. c) Plot the performance characteristics of the generator 6. Equivalent circuit of single phase induction motor <i>Objectives:</i> a) Conduct no load and blocked tor test on the motor c) Find the equivalent circuit 7. Electrical braking b) Plot the speed variations at different conditions 8. Separation of hysteresis loss in a slip ring induction motor <i>Objective:</i> Determine the hysteresis loss in a slip ring induction motor Objective: Determine the hysteresis loss in a slip ring induction motor Objective: Determine the hysteresis loss in a slip ring induction motor Objective: Determine the hysteresis loss in a slip ring induction motor 	
 b) Determine the performance in the two cases and compare 4. V curve of a synchronous motor <i>Objectives:</i> a) Run the motor in two different load conditions b) Determine v-curve for each load condition 5. Performance characteristics of induction generator <i>Objective:</i> a) Run the induction generator with a dc motor prime mover. c) Plot the performance characteristics of the generator 6. Equivalent circuit of single phase induction motor <i>Objectives:</i> a) Conduct no load and blocked tor test on the motor c) Find the equivalent circuit 7. Electrical braking of slip ring induction motor <i>Objectives:</i> a) Dynamic braking b) Plot the speed variations at different conditions 8. Separation of hysteresis loss in a three phase slip ring induction motor <i>Objective:</i> Determine the hysteresis loss in a slip ring induction motor Objective: Determine the hysteresis loss in a slip ring induction motor <i>Objective:</i> Determine the successful completion of the course, the students will be able to test and validate DC generators, DC motors and transformers 	
 4. V curve of a synchronous motor <i>Objectives:</i> a) Run the motor in two different load conditions b) Determine v-curve for each load condition 5. Performance characteristics of induction generator <i>Objective:</i> a) Run the induction generator with a dc motor prime mover. c) Plot the performance characteristics of the generator 6. Equivalent circuit of single phase induction motor <i>Objectives:</i> a) Conduct no load and blocked tor test on the motor c) Find the equivalent circuit 7. Electrical braking of slip ring induction motor <i>Objectives:</i> a) Dynamic braking b) Plot the speed variations at different conditions 8. Separation of hysteresis loss in a three phase slip ring induction motor <i>Objective:</i> Determine the hysteresis loss in a slip ring induction motor <i>Objective:</i> Determine the successful completion of the course, the students will be able to test and validate DC generators, DC motors and transformers 	
Objectives: a) Run the motor in two different load conditions b) Determine v-curve for each load condition 5. Performance characteristics of induction generator Objective: a) Run the induction generator with a dc motor prime mover. c) Plot the performance characteristics of the generator 6. Equivalent circuit of single phase induction motor Objectives: a) Conduct no load and blocked tor test on the motor c) Find the equivalent circuit 7. Electrical braking of slip ring induction motor Objectives: a) Dynamic braking b) Plot the speed variations at different conditions 8. Separation of hysteresis loss in a three phase slip ring induction motor Objective: Determine the hysteresis loss in a slip ring induction motor Objective: Determine the hysteresis loss in a slip ring induction motor Objective: Determine the speed variations at lip ring induction motor Objective: Determine the hysteresis loss in a slip ring induction motor Objective: Determine the speed variations at lip ring induction motor Objective: Determine the hysteresis loss in a slip ring induction motor	
 a) Run the motor in two different load conditions b) Determine v-curve for each load condition 5. Performance characteristics of induction generator <i>Objective:</i> a) Run the induction generator with a dc motor prime mover. c) Plot the performance characteristics of the generator 6. Equivalent circuit of single phase induction motor <i>Objectives:</i> a) Conduct no load and blocked tor test on the motor c) Find the equivalent circuit 7. Electrical braking of slip ring induction motor <i>Objectives:</i> a) Dynamic braking b) Plot the speed variations at different conditions 8. Separation of hysteresis loss in a three phase slip ring induction motor <i>Objective:</i> Determine the hysteresis loss in a slip ring induction motor Charter of the above experiments, minimum twelve experiments should be done. 2. Xpected outcome: After the successful completion of the course, the students will be able to test and validate DC generators, DC motors and transformers 	
 b) Determine v-curve for each load condition 5. Performance characteristics of induction generator <i>Objective:</i> a) Run the induction generator with a dc motor prime mover. c) Plot the performance characteristics of the generator 6. Equivalent circuit of single phase induction motor <i>Objectives:</i> a) Conduct no load and blocked tor test on the motor c) Find the equivalent circuit 7. Electrical braking of slip ring induction motor <i>Objectives:</i> a) Dynamic braking b) Plot the speed variations at different conditions 8. Separation of hysteresis loss in a three phase slip ring induction motor <i>Objective:</i> Determine the hysteresis loss in a slip ring induction motor 2. Control the above experiments, minimum twelve experiments should be done. 2. Xpected outcome: After the successful completion of the course, the students will be able to test and validate DC generators, DC motors and transformers 	
 5. Performance characteristics of induction generator Objective: a) Run the induction generator with a dc motor prime mover. c) Plot the performance characteristics of the generator 6. Equivalent circuit of single phase induction motor Objectives: a) Conduct no load and blocked tor test on the motor c) Find the equivalent circuit 7. Electrical braking of slip ring induction motor Objectives: a) Dynamic braking b) Plot the speed variations at different conditions 8. Separation of hysteresis loss in a slip ring induction motor Objective: Determine the hysteresis loss in a slip ring induction motor Objective: Determine the successful completion of the course, the students will be able to test and validate DC generators, DC motors and transformers 	
Objective: a) Run the induction generator with a dc motor prime mover. c) Plot the performance characteristics of the generator 6. Equivalent circuit of single phase induction motor Objectives: a) Conduct no load and blocked tor test on the motor c) Find the equivalent circuit 7. Electrical braking of slip ring induction motor Objectives: a) Dynamic braking b) Plot the speed variations at different conditions 8. Separation of hysteresis loss in a three phase slip ring induction motor Objective: Determine the hysteresis loss in a slip ring induction motor Objective: Determine the speces loss in a slip ring induction motor Objective: Determine the hysteresis loss in a slip ring induction motor Objective: Determine the hysteresis loss in a slip ring induction motor Objective: Determine the hysteresis loss in a slip ring induction motor Charter the successful completion of the course, the students will be able to test and validate DC generators, DC motors and transformers	
 a) Run the induction generator with a dc motor prime mover. c) Plot the performance characteristics of the generator 6. Equivalent circuit of single phase induction motor <i>Objectives</i>: a) Conduct no load and blocked tor test on the motor c) Find the equivalent circuit 7. Electrical braking of slip ring induction motor <i>Objectives</i>: a) Dynamic braking b) Plot the speed variations at different conditions 8. Separation of hysteresis loss in a three phase slip ring induction motor <i>Objective:</i> Determine the hysteresis loss in a slip ring induction motor Out of the above experiments, minimum twelve experiments should be done. Expected outcome: After the successful completion of the course, the students will be able to test and validate DC generators, DC motors and transformers 	
 c) Plot the performance characteristics of the generator 6. Equivalent circuit of single phase induction motor <i>Objectives</i>: a) Conduct no load and blocked tor test on the motor c) Find the equivalent circuit 7. Electrical braking of slip ring induction motor <i>Objectives</i>: a) Dynamic braking b) Plot the speed variations at different conditions 8. Separation of hysteresis loss in a three phase slip ring induction motor <i>Objective:</i> Determine the hysteresis loss in a slip ring induction motor Out of the above experiments, minimum twelve experiments should be done. Expected outcome: After the successful completion of the course, the students will be able to test and validate DC generators, DC motors and transformers 	
 6. Equivalent circuit of single phase induction motor Objectives: a) Conduct no load and blocked tor test on the motor c) Find the equivalent circuit 7. Electrical braking of slip ring induction motor Objectives: a) Dynamic braking b) Plot the speed variations at different conditions 8. Separation of hysteresis loss in a three phase slip ring induction motor Objective: Determine the hysteresis loss in a slip ring induction motor Objective: Determine the hysteresis loss in a slip ring induction motor 0 Determine the hysteresis loss in a slip ring induction motor Objective: Determine the hysteresis loss in a slip ring induction motor Objective: Determine the hysteresis loss in a slip ring induction motor 0 Determine the hysteresis loss in a slip ring induction motor Out of the above experiments, minimum twelve experiments should be done.	
Objectives: a) Conduct no load and blocked tor test on the motor c) Find the equivalent circuit 7. Electrical braking of slip ring induction motor Objectives: a) Dynamic braking b) Plot the speed variations at different conditions 8. Separation of hysteresis loss in a three phase slip ring induction motor Objective: Determine the hysteresis loss in a slip ring induction motor Out of the above experiments, minimum twelve experiments should be done. Expected outcome: • After the successful completion of the course, the students will be able to test and validate DC generators, DC motors and transformers	
 a) Conduct no load and blocked tor test on the motor c) Find the equivalent circuit 7. Electrical braking of slip ring induction motor <i>Objectives</i>: a) Dynamic braking b) Plot the speed variations at different conditions 8. Separation of hysteresis loss in a three phase slip ring induction motor <i>Objective:</i> Determine the hysteresis loss in a slip ring induction motor Out of the above experiments, minimum twelve experiments should be done. Expected outcome: After the successful completion of the course, the students will be able to test and validate DC generators, DC motors and transformers 	
 c) Find the equivalent circuit 7. Electrical braking of slip ring induction motor <i>Objectives</i>: a) Dynamic braking b) Plot the speed variations at different conditions 8. Separation of hysteresis loss in a three phase slip ring induction motor <i>Objective:</i> Determine the hysteresis loss in a slip ring induction motor Dut of the above experiments, minimum twelve experiments should be done. Expected outcome: After the successful completion of the course, the students will be able to test and validate DC generators, DC motors and transformers 	5
 7. Electrical braking of slip ring induction motor <i>Objectives</i>: a) Dynamic braking b) Plot the speed variations at different conditions 8. Separation of hysteresis loss in a three phase slip ring induction motor <i>Objective:</i> Determine the hysteresis loss in a slip ring induction motor Out of the above experiments, minimum twelve experiments should be done. Expected outcome: After the successful completion of the course, the students will be able to test and validate DC generators, DC motors and transformers 	
Objectives: a) Dynamic braking b) Plot the speed variations at different conditions 8. Separation of hysteresis loss in a three phase slip ring induction motor Objective: Determine the hysteresis loss in a slip ring induction motor Out of the above experiments, minimum twelve experiments should be done. Expected outcome: • After the successful completion of the course, the students will be able to test and validate DC generators, DC motors and transformers	
 a) Dynamic braking b) Plot the speed variations at different conditions 8. Separation of hysteresis loss in a three phase slip ring induction motor <i>Objective:</i> Determine the hysteresis loss in a slip ring induction motor Out of the above experiments, minimum twelve experiments should be done. Expected outcome: After the successful completion of the course, the students will be able to test and validate DC generators, DC motors and transformers 	
 b) Plot the speed variations at different conditions 8. Separation of hysteresis loss in a three phase slip ring induction motor <i>Objective:</i> Determine the hysteresis loss in a slip ring induction motor Dut of the above experiments, minimum twelve experiments should be done. Expected outcome: After the successful completion of the course, the students will be able to test and validate DC generators, DC motors and transformers 	
 8. Separation of hysteresis loss in a three phase slip ring induction motor <i>Objective:</i> Determine the hysteresis loss in a slip ring induction motor Dut of the above experiments, minimum twelve experiments should be done. Expected outcome: After the successful completion of the course, the students will be able to test and validate DC generators, DC motors and transformers 	
Objective: Determine the hysteresis loss in a slip ring induction motor Out of the above experiments, minimum twelve experiments should be done. Cxpected outcome: • After the successful completion of the course, the students will be able to test and validate DC generators, DC motors and transformers	
Determine the hysteresis loss in a slip ring induction motor Dut of the above experiments, minimum twelve experiments should be done. Expected outcome: • After the successful completion of the course, the students will be able to test and validate DC generators, DC motors and transformers	
 Out of the above experiments, minimum twelve experiments should be done. Expected outcome: After the successful completion of the course, the students will be able to test and validate DC generators, DC motors and transformers 	
 After the successful completion of the course, the students will be able to test and validate DC generators, DC motors and transformers 	Determine the hysteresis loss in a sup ring induction motor
 After the successful completion of the course, the students will be able to test and validate DC generators, DC motors and transformers 	Out of the above experiments, minimum twelve experiments should be done
• After the successful completion of the course, the students will be able to test and validate DC generators, DC motors and transformers	Out of the above experiments, minimum twerve experiments should be done.
• After the successful completion of the course, the students will be able to test and validate DC generators, DC motors and transformers	Expected outcome:
generators, DC motors and transformers	-
hant Da alta	generators, De motors and transformers
ext dook:	Text Book:

- 1. Bimbra P. S., *Electrical Machinery*, 7/e, Khanna Publishers, 2011.
- 2. Theraja B. L., *A Textbook of Electrical Technology*, S. Chand & Company, New Delhi, 2008.

2014

Course code	Course Name	L-T-P - Credits	Year of Introduction	
EE334	Power Electronics and Drives Lab	0-0-3-1	2016	
Prerequisite: E	EE305 Power electronics			
Course Object	ives			
• Impart	practical knowledge for the design an	d setup of different	power electronic	
converte	ers and its application for motor control	ZATAAA		
1	e the various power electronics converters	AC drives and DC driv	ves	
	es/Experiments: (12 experiments are ma			
HARDWARE	EXPERIMENTS:	ITV		
	aracteristics of SCR			
	termine latching current, holding current and s	static characteristics of SC	R	
	C firing circuits			
	sign and set up R and RC firing circuits and o	bserve waveforms across l	oad resistance and	
SCR		C'		
	gger circuit with Single phase controlled Recti sign & Set up UJT Triggering Circuit and obs		d registeres SCP	
	the and pulse transformer output.	erve waverorms across to	au resistance, SCK,	
-	chronised Triggering Circuits			
	sign and set-up line synchronized Ramp Trigg	er and Digital Trigger circ	cuits and observe	
the wave		,		
5. Static ch	aracteristics of MOSFET			
Aim: Plo	ot the characteristics of a Power MOSFET			
	age Controller using TRIAC			
	a 1-phase AC voltage controller & observe w	vaveforms across load resi	stance, TRIAC and	
	for different firing angles			
Ų	hase fully Controlled SCR Bridge circuit	· 1 1 · 1 · C 1 · 1		
	up a 1-phase full converter with RL load & w		ing diode	
v .	hase half bridge/full bridge inverter using pow		the waveforms	
	sign and set up a single phase half-bridge/full- ad and firing pulses.	-bildge inverter and observ	ve the waverorms	
	hase sine PWM inverter with LC filter			
v .	sign and set up a single phase sine PWM inve	rter with LC filter using m	icrocontroller	
	controlled DC motor	C		
Aim: Co	ntrol the speed of a DC motor using a step-do	wn chopper		
	ontrol of 3-phase induction motor			
	ntrol the speed of 3-phase induction motor usi	ng V/f control		
	sed three phase PWM Inverter			
	up a 3-phase PWM Inverter with RL load and			
	coop Control of Single Phase Fully Controlled		Destifier auch that	
	sign and set-up a closed loop control circuit for the load voltage constant irrespective of the lo		Rectifier such that	
SIMULATION	EXPERIMENTS:			
	on of 1-phase fully-controlled and half-contro	olled rectifier fed separatel	y excited DC	
motor	^	*	-	
	nulate 1-phase fully-controlled and half-contro			
	l, torque, armature current, armature voltage, s	source current waveforms	and find the THD	
in source	e current and input power factor.			

- 15. Simulation of closed loop speed control of DC motor with different control schemes (PID, hysteresis current control, Fuzzy, ANFIS etc)
- 16. Simulation of open loop or closed loop speed control of 3-phase induction motor using V/f control and using sine PWM
- 17. Design and simulation of buck, boost and buck-boost converters
- 18. Simulation of Dual Converter 4 quadrant operation separately excited DC motor
- 19. Simulation of Regenerative Braking Bidirectional Power Transfer
- 20. Simulation of Switched Mode Rectifiers keeping load voltage constant irrespective of line and load variations closed loop circuit simulation


Minimum of EIGHT hardware experiments and FOUR simulation experiments from the above list are to be done

Expected outcome.

• Students will be able to design, setup and analyse various power electronic converters and apply these converters for the implementation of various motor control applications.

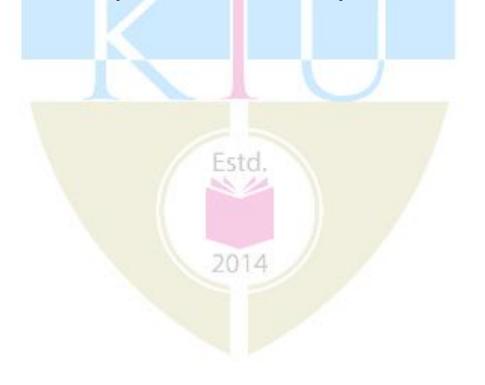
Text Book:

- 1) L. Umanand, Power Electronics Essentials & Applications, Wiley-India
- 2) Mohan, Undeland, Robbins, Power Electronics, Converters, Applications & Design, Wiley-India
- 3) Muhammad H. Rashid, Power Electronics Circuits, Devices and Applications, Pearson Education

Course code	e Course Name L-T- Cred		Year of roduction
EE361			2016
Prerequi	site: EE207 Computer programming		
Course C	 Dbjectives To familiarize the student with the Object Oriented Programm To give a fair idea about Programming in Java and its use as development tool 	-	-
managem	of Object Oriented Concept, Components of Object oriented ent concepts, Database programming, Application development co	1 0	ming, File
•]	d outcome . The students will be able to develop simple application programs us concepts and Java	sing object	oriented
Text Bo	concepts and Java	_	
1. C F	Cay S. Horstmann and Gary Cornell, "Core Java: Volume I & II– F Pearson Education, 2008. Herbert Schildt, The Complete Reference Java2, Eighth Edition, Ta		
Referen 1. I 2. K	ces: Doug Lea, Concurrent programming in Java Design Principles and Education. K. Arnold and J. Gosling, "The JAVA programming language", Pe	Patterns, Pe arson Educa	earson ation.
	Fimothy Budd, "Understanding Object-oriented programming with Education. 3.	Java", Pea	rson
	Course Plan	_	0
Module	Contents	Hours	Sem. Exam Marks
Ι	Review of Object Oriented Concepts - Objects and classes in Java – defining classes – methods – access specifiers	n 7	15%
II	- static methods- constructors, Arrays - Strings -Packages - JavaDoc comments,	7	15%
	FIRST INTERNAL EXAMINATION		1 4 7 1 1
III	Inheritance – class hierarchy – polymorphism – dynamic binding – final keyword – abstract classes – the Object class – Reflection – interfaces – object cloning – inner classes		15%
IV	Streams and Files -Use of Streams, Object Streams, Applet Basics-The Applet HTML Tags and Attributes, Multimedia, The Applet Context, JAR Files.	7	15%
	SECOND INTERNAL EXAMINATION	I	I
	File Management. Multithreaded programming– Thread	7	20%
V	properties – Creating a thread -Interrupting threads –Thread priority- thread synchronization – Synchronized method -Inter		
V VI	properties – Creating a thread -Interrupting threads –Thread	7	20%

Maximum Marks: 100

Exam Duration: 3Hourrs.


Part A: 8 compulsory questions.

One question from each module of Module I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course c	ode	Course Name	L-T-P - Credits	I	Year on troduct	
EE36 2	2	Data Structures and Algorithms	3-0-0-3		2016	
Prerequi	site: E	E207 Computer programming				
Course C						
		o introduce the fundamental concept of data	structures a	nd to	emphas	ize the
	i	mportance of data structures in developing and in	plementing	effici	ent algoi	rithms
		o impart knowledge about algorithm specificatio	1 0		U	
Syllobus		o impart knowledge about algoriann specificano	AA	A-		
Syllabus		s, Tree Structures, Applications of trees, Baland	ed Search	Ггоос и	and Inde	vina
		test-path algorithms, Applications of graphs,				
		mic programming	ngonum	Desi	511, 1112	Jonnin
1 mary 515	, Dyna		\mathbf{V}			
Expecte	ed outc	ome.	1			
-		fill be able to:				
i.	Desc	ribe how arrays, records, linked structures, stac	ks, queues,	trees,	and gra	phs are
	repre	sented in memory and used by algorithms				
ii.	Desc	ribe common applications for arrays, records, l	inked struc	tures,	stacks,	queues,
		, and graphs				
iii.		e programs that use arrays, records, linked strue	ctures, stacl	ks, qu	eues, tre	es, and
	grapl					
iv.		onstrate different methods for traversing trees	7.6		C	
V.		pare alternative implementations of data structure	-			
vi.		pare and contrast the benefits of dynam ementations	ic and st	atic	data str	uctures
vii.	-	ribe the concept of recursion, give examples of	f its use de	scribe	how it	can be
V 11.		emented using a stack	i its use, ue	senioe	now n	
Text Bo						
		Kruse, Data Structures and program design in C.	Pearson Ed	lucatio	on Asia	
		a,Classic Data Structures, PHI				
		ey & Sorenson, An introduction to Data Structur	es with app	licatio	ns:, McC	Graw
I	Hill	Estd,				
Referen	ces:					
		E Knuth, The Art of Computer Programming, Vo	ol.1: Fundan	nental	Algorith	ms,
		-Wesley, 1997.			100	_
	-	n, Augenstein & Tanenbaum, Data Structures usi	-	⊦: Pea	rson, 199	95
		Algorithms + Data Structures & Programs:, PH		C 1		
		Mehta, Fundamentals of Data Structures in C++		, Galg	jottia Pul	Э.
5. Tl	nomas	Standish, Data structures in Java:, Pearson Educa Course Plan	ation Asia			
T		Course Plan				Sem.
Module		Contents			Hours	Exam
						Marks
		Structures : Abstract data types(ADT), List AD	•			
	-	mentation, Linked list implementation, Curser				
	iists, 1	Doubly linked lists, Applications of lists, Stack	KADI, QU	eue	7	150/
Ι		· · ·	of stacks	and	7	15%
Ι		Circular queue implementation, Applications	of stacks a	and	1	15%

II	Tree Structures : Need for nonlinear structures, Tree ADT, Tree traversals, Left child right sibling data structures for general trees, Binary tree ADT, Expression trees, Applications of trees, Binary search tree ADT	7	15%
	FIRST INTERNAL EXAMINATION		
III	Balanced Search Trees and Indexing : AVL trees, Binary heaps, B- trees, Hashing, Separate chaining, Open addressing, Linear probing	7	15%
IV	Graphs : Definitions, Topological sort, Breadth-first traversal, Shortest-path algorithms, Minimum spanning tree, Prim's and Kruskal's algorithms, Depth-first traversal, Bio connectivity, Euler circuits, Applications of graphs	7	15%
	SECOND INTERNAL EXAMINATION		
V	Algorithm Design: Greedy algorithm, Divide and conquer, Dynamic programming, Backtracking, Branch and bound, Randomized algorithms	7	20%
VI	Algorithm Analysis : Asymptotic notations, Recurrences, NP complete problems	7	20%
	END SEMESTER EXAM		

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

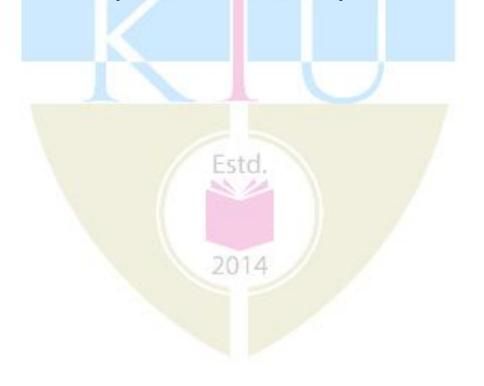
2014

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course code	e Course Name	L-T-P - Credits		ear of oduction
EE363	Computer Organization and Architecture	3-0-0-3		2016
Prerequi				
Course O				
•	To lay the foundation for the study of hardware organization	of digital	compute	ers.
•	To impart the knowledge on interplay between various build	-	-	
Syllabus		0		
	erational concepts, CPU structure, Arithmetic, Memory	hierarchy	, Input	Output
-	g, Performance analysis, Design	JIAL.	-	1
Expecte	d outcome.	A		
• 7	The students will gain general idea about the functional aspect	ts of each b	uilding	blocks
i	n computer design			
Text Bo	ok:			
	. Stallings, Computer Organization and Architecture: Designing	ng for Perfe	ormance	e, 8 th
	I., Pearson Education India.			
Referen			. d	
	D. A. Patterson and J. L. Hennessy, Computer Organization an	d Design, 4	4 ^m Ed., 1	Morgan
	Kaufmann, 2008.			
	Hamacher, Vranesic&Zaky, Computer Organization, McGraw			
3. H	Ieuring V. P. & Jordan H. F., Computer System Design & Arc	chitecture,	Addisor	n Wesely
	Course Plan			
				Core F
Module	Contents	T	Jours	
Module	Contents	I	Hours	xamM
Module			Hours	
	Basic Structure of computers – functional units – His	storical		xamM
Module	Basic Structure of computers – functional units – His Perspective -Basic operational concepts – bus stru	storical actures,		xamM
	Basic Structure of computers – functional units – His	storical actures,		Sem.E xamM arks 15%
	Basic Structure of computers – functional units – His Perspective -Basic operational concepts – bus stru Measuring performance: evaluating, comparing and summ performance	storical actures, aarizing		xamM arks
	Basic Structure of computers – functional units – His Perspective -Basic operational concepts – bus stru Measuring performance: evaluating, comparing and summ performance	storical actures, arizing	7	xamM arks
I	Basic Structure of computers – functional units – His Perspective -Basic operational concepts – bus stru Measuring performance: evaluating, comparing and summ performance Memory locations and addresses – memory operation	storical actures, arizing	7	xamM arks
I	Basic Structure of computers – functional units – His Perspective -Basic operational concepts – bus stru Measuring performance: evaluating, comparing and summ performance Memory locations and addresses – memory operation instructions and instruction sequencing ,Instruction sets-	storical actures, arizing	7	xamM arks 15%
I	Basic Structure of computers – functional units – His Perspective -Basic operational concepts – bus stru Measuring performance: evaluating, comparing and summ performance Memory locations and addresses – memory operation instructions and instruction sequencing ,Instruction sets- and CISC paradigms, Addressing modes	storical actures, aarizing ons – RISC	7	xamM arks 15%
I	Basic Structure of computers – functional units – His Perspective -Basic operational concepts – bus stru Measuring performance: evaluating, comparing and summ performance Memory locations and addresses – memory operation instructions and instruction sequencing ,Instruction sets- and CISC paradigms, Addressing modes FIRST INTERNAL EXAMINATION	storical actures, aarizing ons – RISC	7 7	xamM arks 15% 15%
I	Basic Structure of computers – functional units – His Perspective -Basic operational concepts – bus stru Measuring performance: evaluating, comparing and summ performance Memory locations and addresses – memory operation instructions and instruction sequencing ,Instruction sets- and CISC paradigms, Addressing modes FIRST INTERNAL EXAMINATION Computer arithmetic - Signed and unsigned numbers - Addited	storical actures, arizing ons – RISC tion -	7 7	xamM arks 15% 15%
I	Basic Structure of computers – functional units – His Perspective -Basic operational concepts – bus stru Measuring performance: evaluating, comparing and summ performance Memory locations and addresses – memory operation instructions and instruction sequencing ,Instruction sets- and CISC paradigms, Addressing modes FIRST INTERNAL EXAMINATION Computer arithmetic - Signed and unsigned numbers - Addit and subtraction - Logical operations - Constructing an ALU	storical actures, arizing ons – RISC tion -	7 7	xamM arks 15% 15%
I II III	Basic Structure of computers – functional units – His Perspective -Basic operational concepts – bus stru Measuring performance: evaluating, comparing and summ performance Memory locations and addresses – memory operation instructions and instruction sequencing ,Instruction sets- and CISC paradigms, Addressing modes FIRST INTERNAL EXAMINATION Computer arithmetic - Signed and unsigned numbers - Addit and subtraction - Logical operations - Constructing an ALU Multiplication and division – faster versions of multiplication	storical actures, aarizing ons – RISC tion - n-	7 7	xamM arks 15% 15%
I	Basic Structure of computers – functional units – His Perspective -Basic operational concepts – bus stru Measuring performance: evaluating, comparing and summ performance Memory locations and addresses – memory operation instructions and instruction sequencing ,Instruction sets- and CISC paradigms, Addressing modes FIRST INTERNAL EXAMINATION Computer arithmetic - Signed and unsigned numbers - Addit and subtraction - Logical operations - Constructing an ALU Multiplication and division – faster versions of multiplication floating point representation and arithmetic	storical actures, aarizing ons – RISC tion - n-	7 7 7	xamM arks 15% 15%
I II III	Basic Structure of computers – functional units – His Perspective -Basic operational concepts – bus stru Measuring performance: evaluating, comparing and summ performance Memory locations and addresses – memory operation instructions and instruction sequencing ,Instruction sets- and CISC paradigms, Addressing modes FIRST INTERNAL EXAMINATION Computer arithmetic - Signed and unsigned numbers - Addit and subtraction - Logical operations - Constructing an ALU Multiplication and division – faster versions of multiplication floating point representation and arithmetic The processor: Building a data path - Simple and multiplication	storical actures, aarizing ons – RISC tion - n-	7 7 7	xamM arks 15% 15%
I II III	Basic Structure of computers – functional units – His Perspective -Basic operational concepts – bus stru Measuring performance: evaluating, comparing and summ performance Memory locations and addresses – memory operation instructions and instruction sequencing ,Instruction sets- and CISC paradigms, Addressing modes FIRST INTERNAL EXAMINATION Computer arithmetic - Signed and unsigned numbers - Addita and subtraction - Logical operations - Constructing an ALU Multiplication and division – faster versions of multiplication floating point representation and arithmetic The processor: Building a data path - Simple and multiplications - Microprogramming – Exceptions	storical actures, aarizing ons – RISC tion - n- ti-cycle	7 7 7	xamM arks 15% 15%
I II III	Basic Structure of computers – functional units – His Perspective -Basic operational concepts – bus stru Measuring performance: evaluating, comparing and summ performance Memory locations and addresses – memory operation instructions and instruction sequencing ,Instruction sets- and CISC paradigms, Addressing modes FIRST INTERNAL EXAMINATION Computer arithmetic - Signed and unsigned numbers - Addit and subtraction - Logical operations - Constructing an ALU Multiplication and division – faster versions of multiplication floating point representation and arithmetic The processor: Building a data path - Simple and multi implementations - Microprogramming – Exceptions SECOND INTERNAL EXAMINATION	storical actures, aarizing ons – RISC tion - n- ti-cycle	7 7 7 6	xamM arks 15% 15% 15%
I II III IV	Basic Structure of computers – functional units – His Perspective -Basic operational concepts – bus stru Measuring performance: evaluating, comparing and summ performance Memory locations and addresses – memory operation instructions and instruction sequencing ,Instruction sets- and CISC paradigms, Addressing modes FIRST INTERNAL EXAMINATION Computer arithmetic - Signed and unsigned numbers - Addit and subtraction - Logical operations - Constructing an ALU Multiplication and division – faster versions of multiplication floating point representation and arithmetic The processor: Building a data path - Simple and multiplications - Microprogramming – Exceptions SECOND INTERNAL EXAMINATION Introduction to pipelining-pipeline Hazards, Memory hierarce	storical actures, aarizing ons – RISC tion - n- ti-cycle	7 7 7 6	xamM arks 15% 15% 15%
I II III IV	Basic Structure of computers – functional units – His Perspective -Basic operational concepts – bus stru Measuring performance: evaluating, comparing and summ performance Memory locations and addresses – memory operation instructions and instruction sequencing ,Instruction sets- and CISC paradigms, Addressing modes FIRST INTERNAL EXAMINATION Computer arithmetic - Signed and unsigned numbers - Addit and subtraction - Logical operations - Constructing an ALU Multiplication and division – faster versions of multiplication floating point representation and arithmetic The processor: Building a data path - Simple and multiplications - Microprogramming – Exceptions SECOND INTERNAL EXAMINATION Introduction to pipelining-pipeline Hazards, Memory hierarc Caches - Cache performance - Virtual memory - Common	storical actures, aarizing ons – RISC tion - n- ti-cycle	7 7 7 6	xamM arks 15% 15% 15%
I II III IV V	Basic Structure of computers – functional units – His Perspective -Basic operational concepts – bus stru Measuring performance: evaluating, comparing and summ performance Memory locations and addresses – memory operation instructions and instruction sequencing ,Instruction sets- and CISC paradigms, Addressing modes FIRST INTERNAL EXAMINATION Computer arithmetic - Signed and unsigned numbers - Addit and subtraction - Logical operations - Constructing an ALU Multiplication and division – faster versions of multiplication floating point representation and arithmetic The processor: Building a data path - Simple and multiplications - Microprogramming – Exceptions SECOND INTERNAL EXAMINATION Introduction to pipelining-pipeline Hazards, Memory hierarc Caches - Cache performance - Virtual memory - Common framework for memory hierarchies	storical actures, aarizing ons – RISC tion - n- ti-cycle	7 7 7 6 7	xamM arks 15% 15% 15% 20%
I II III IV	Basic Structure of computers – functional units – His Perspective -Basic operational concepts – bus stru Measuring performance: evaluating, comparing and summ performance Memory locations and addresses – memory operation instructions and instruction sequencing ,Instruction sets- and CISC paradigms, Addressing modes FIRST INTERNAL EXAMINATION Computer arithmetic - Signed and unsigned numbers - Addit and subtraction - Logical operations - Constructing an ALU Multiplication and division – faster versions of multiplication floating point representation and arithmetic The processor: Building a data path - Simple and multiplications - Microprogramming – Exceptions SECOND INTERNAL EXAMINATION Introduction to pipelining-pipeline Hazards, Memory hierarc Caches - Cache performance - Virtual memory - Common framework for memory hierarchies Input/output - I/O performance measures – I/O techniques -	storical actures, aarizing ons – RISC tion - n- ti-cycle chy -	7 7 7 6 7	xamM arks 15% 15% 15% 20%
I II III IV V	Basic Structure of computers – functional units – His Perspective -Basic operational concepts – bus stru Measuring performance: evaluating, comparing and summ performance Memory locations and addresses – memory operation instructions and instruction sequencing ,Instruction sets- and CISC paradigms, Addressing modes FIRST INTERNAL EXAMINATION Computer arithmetic - Signed and unsigned numbers - Addit and subtraction - Logical operations - Constructing an ALU Multiplication and division – faster versions of multiplication floating point representation and arithmetic The processor: Building a data path - Simple and multi implementations - Microprogramming – Exceptions SECOND INTERNAL EXAMINATION Introduction to pipelining-pipeline Hazards, Memory hierarc Caches - Cache performance - Virtual memory - Common framework for memory hierarchies Input/output - I/O performance measures – I/O techniques - interrupts, polling, DMA; Synchronous vs. Asynchronous I/O	storical actures, aarizing ons – RISC tion - n- ti-cycle chy -	7 7 7 6 7	xamM arks 15% 15% 15% 20%

Maximum Marks: 100

Exam Duration: 3Hourrs.


Part A: 8 compulsory questions.

One question from each module of Module I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course	code	Course Na	me		L-T-P Credit		Year of roduction
EE36	4	Switched Mode Powe	er Convert	ers	3-0-0-	3	2016
Prerequ	site : Nil						
• T		alyze various types of s ters and its switching te		ode dc- dc c	onverters,	inverters	and
Syllabus DC-DC	convertors with – switched m	hout isolation – switch ode DC-AC converter	ned mode j		-		
	l outcome . nts will have	INIVE	RS	ITY			
i. ii.	ability to anal proper unders	yze and design switched tanding about soft switch	ing and its a	pplications			
iii. Text Bo	-	lge in pulse width modula	ated techniq	les			
1. M 2. M	lohan, Undeland	l, Robbins, <i>Power Electro</i> Rashid, <i>Power Electro</i>				0	•
Referen	ices:	C. it line Devenue	h. Darian				
1. A	branam Pressma	an, Switching Power supp	Design, Course Pla				
Module		Conten				Hours	Sem. Exam Marks
I	 buck-boost c inductance & discontinuous o 	e DC-to-DC Converter - converter - Continuous C capacitance - boun conduction – critical valu conduction mode with	onduction r dary betw ues of induc	node – desig een continu tance/load re	n of filter ous and esistance -	7	15%
II	Cuk converter and unipolar vo Power Supply power supply	 Full-ridge dc-dc Conve bltage switching –compar disadvantages of linear dc-dc converters with e & bidirectional core exci 	erter – PWM rison of dc-o r power sup electrical iso itation	lc converters ply – switch lation –unidi	- Linear ed mode rectional	7	15%
		FIRST INTERN					1
III	double ended converter – pr only - double e	verter – continuous & c fly back converter – for actical forward converte ended forward converter – l bridge converter – cont onverter	rw <mark>ard conv</mark> er – continu – push pull	erters – basi ious conduct converter – h	c forward ion mode alf bridge	7	15%
IV	inverter – squa PWM with bip output voltage source inverter	e DC to AC converter – re wave switching schem bolar & unipolar voltage – output control by volta – 3-phase sine PWM inv ental line-to-line voltag	e - sine PW switching age cancella verter – RMS	M switching harmonic a ation - 3-phas line to line	scheme – nalysis of se voltage voltage &	8	15%

V Concept of space vector – switching times – space v space vector PWM - p	ND INTERNAL EXAMINATION space vector modulation – reference vector & rector sequence – comparison of sine PWM &		
V switching times – space v space vector PWM - p	vector sequence – comparison of sine PWM &		
control	rogrammed (selective) harmonic elimination lled voltage source inverter - hysteresis current	6	20%
vi circuit – parallel resonant o	ype - ZVS resonant converter – comparison of	7	20%

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Module I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Estd.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

2014

Course co	ode	Course Name	L-T-P - Credits	Year Introdu	
EE365		Digital System Design	3-0-0-3	201	
Prerequis			0000	201	
Course O					
		ble designing and building of real digital circuits			
		lement VHDL programming in digital system design			
Syllabus	, mp	ement vinde programming in digital system design			
•	ional	logic using VHDL gate models, Combinational b	ouilding blo	ocks. Svn	chronous
		sign, VHDL Models of Sequential Logic Blocks, C		· · ·	
		ion, VHDL Synthesis, Testing Digital Systems, Desig			~) ~ · · · · · ,
Expected			AI		
-		ing the course, the students will be able to	7		
i.	-	ign any Digital Circuit for practical application			
ii.		lement any digital system using VHDL			
iii.	Prog	gram any VHDL code for practical implementation			
iv.	Har	dware realization of any complex VHDL system.			
Text Bo	ok:				
Ma	ark Z	wolinski, Digital System Design with VHDL, Second	Edition, P	earson	
Ed	lucati	on.2007			
Referen					
		dakumar, Digital Electronics, Prentice Hall India Feb			
		Wakerly, Digital Design, Pearson Education, Delhi, 2			
3. M	orris .	Mano,Digital Design, Pearson Education, Delhi, 2002			
	_	Course Plan			
Module		Course Plan Contents		Hours	Sem. Exam Marks
Module	Intr		hnology,	Hours	Exam
Module		Contents	hnology,	Hours	Exam
		Contents oduction : Modern Digital Design, CMOS Tec	hnology,		Exam Marks
Module I	Pro Cor	Contents oduction : Modern Digital Design, CMOS Tec grammable Logic ,Electrical Properties nbinational Logic Design : Boolean Algebra , Logi	1.7	Hours 4	Exam
	Pro Cor	Contents oduction : Modern Digital Design, CMOS Tec grammable Logic ,Electrical Properties	1.7		Exam Marks
	Pro Cor	Contents oduction : Modern Digital Design, CMOS Tec grammable Logic ,Electrical Properties nbinational Logic Design : Boolean Algebra , Logi	1.1		Exam Marks
	Pro Cor Cor	Contents oduction : Modern Digital Design, CMOS Tec grammable Logic ,Electrical Properties nbinational Logic Design : Boolean Algebra , Log nbinational Logic Design, Timing, Number codes	ic Gates,		Exam Marks
	Pro Cor Cor Cor	Contents oduction : Modern Digital Design, CMOS Tec grammable Logic ,Electrical Properties nbinational Logic Design : Boolean Algebra , Log nbinational Logic Design, Timing, Number codes	ic Gates,		Exam Marks
	Pro Cor Cor Cor	Contents oduction : Modern Digital Design, CMOS Tec grammable Logic ,Electrical Properties nbinational Logic Design : Boolean Algebra , Log nbinational Logic Design, Timing, Number codes nbinational Logic using VHDL Gate Models : Entiti hitectures ,Identifiers , Spaces and Comments ,Net lis	ic Gates, es and ts ,		Exam Marks
	Pro Cor Cor Cor Arc Sign	Contents oduction : Modern Digital Design, CMOS Tec grammable Logic ,Electrical Properties nbinational Logic Design : Boolean Algebra , Log nbinational Logic Design, Timing, Number codes nbinational Logic using VHDL Gate Models : Entiti hitectures ,Identifiers , Spaces and Comments ,Net lis nal Assignments ,Generics ,Constant and Open Ports ,	ic Gates, es and ts ,		Exam Marks
	Pro Cor Cor Cor Arc Sign	Contents oduction : Modern Digital Design, CMOS Tec grammable Logic ,Electrical Properties nbinational Logic Design : Boolean Algebra , Log nbinational Logic Design, Timing, Number codes nbinational Logic using VHDL Gate Models : Entiti hitectures ,Identifiers , Spaces and Comments ,Net lis	ic Gates, es and ts ,		Exam Marks
I	Pro Cor Cor Cor Arc Sign ben	Contents oduction : Modern Digital Design, CMOS Tec grammable Logic ,Electrical Properties nbinational Logic Design : Boolean Algebra , Log nbinational Logic Design, Timing, Number codes nbinational Logic using VHDL Gate Models : Entiti hitectures ,Identifiers , Spaces and Comments ,Net lis nal Assignments ,Generics ,Constant and Open Ports , ches, Configurations	ic Gates, es and ts , Test	4	Exam Marks 15%
Ι	Pro Cor Cor Cor Arc Sigu ben Cor	Contents oduction : Modern Digital Design, CMOS Tec grammable Logic ,Electrical Properties nbinational Logic Design : Boolean Algebra , Log nbinational Logic Design, Timing, Number codes nbinational Logic using VHDL Gate Models : Entiti hitectures ,Identifiers , Spaces and Comments ,Net lis nal Assignments ,Generics ,Constant and Open Ports , ches, Configurations nbinational Building Blocks : Three-Stat Buffers , D	ic Gates, es and ts, Test ecoders	4	Exam Marks 15%
I	Pro Cor Cor Arc Sign ben Cor ,Mu	Contents oduction : Modern Digital Design, CMOS Tec grammable Logic ,Electrical Properties nbinational Logic Design : Boolean Algebra , Log nbinational Logic Design, Timing, Number codes nbinational Logic using VHDL Gate Models : Entiti- hitectures ,Identifiers , Spaces and Comments ,Net lis nal Assignments ,Generics ,Constant and Open Ports , ches, Configurations nbinational Building Blocks : Three-Stat Buffers , D iltiplexers, Priority Encoders , Adders, Parity Checker	ic Gates, es and ts, Test ecoders	4	Exam Marks 15%
I	Pro Cor Cor Arc Sign ben Cor ,Mu	Contents oduction : Modern Digital Design, CMOS Tec grammable Logic ,Electrical Properties nbinational Logic Design : Boolean Algebra , Log nbinational Logic Design, Timing, Number codes nbinational Logic using VHDL Gate Models : Entiti hitectures ,Identifiers , Spaces and Comments ,Net lis nal Assignments ,Generics ,Constant and Open Ports , ches, Configurations nbinational Building Blocks : Three-Stat Buffers , D	ic Gates, es and ts, Test ecoders	4	Exam Marks 15%
I	Pro Cor Cor Arc Sign ben Cor ,Mu	Contents oduction : Modern Digital Design, CMOS Tec grammable Logic ,Electrical Properties nbinational Logic Design : Boolean Algebra , Log nbinational Logic Design, Timing, Number codes nbinational Logic using VHDL Gate Models : Entiti- hitectures ,Identifiers , Spaces and Comments ,Net lis nal Assignments ,Generics ,Constant and Open Ports , ches, Configurations nbinational Building Blocks : Three-Stat Buffers , D iltiplexers, Priority Encoders , Adders, Parity Checker	ic Gates, es and ts , Test ecoders s , Test	4	Exam Marks 15%
I	Pro Cor Cor Arc Sigu ben Cor ,Mu ben	Contents oduction : Modern Digital Design, CMOS Tec grammable Logic ,Electrical Properties nbinational Logic Design : Boolean Algebra , Log nbinational Logic Design, Timing, Number codes nbinational Logic using VHDL Gate Models : Entiti- hitectures ,Identifiers , Spaces and Comments ,Net Iis nal Assignments ,Generics ,Constant and Open Ports , ches, Configurations nbinational Building Blocks : Three-Stat Buffers , D litiplexers, Priority Encoders , Adders, Parity Checker ches for Combinational blocks FIRST INTERNAL EXAMINATION	ic Gates, es and ts , Test ecoders rs , Test	4	Exam Marks 15%
I	Pro Cor Cor Arc Sign ben Cor ,Mu ben	Contents oduction : Modern Digital Design, CMOS Tec grammable Logic ,Electrical Properties nbinational Logic Design : Boolean Algebra , Log nbinational Logic Design, Timing, Number codes nbinational Logic using VHDL Gate Models : Entiti hitectures ,Identifiers , Spaces and Comments ,Net lis nal Assignments ,Generics ,Constant and Open Ports , ches, Configurations nbinational Building Blocks : Three-Stat Buffers , D litiplexers, Priority Encoders , Adders, Parity Checker ches for Combinational blocks FIRST INTERNAL EXAMINATION chronous Sequential Design : Synchronous Sequentia	ic Gates, es and ts , Test ecoders s , Test N 1 Systems	8	Exam Marks
I	Pro Cor Cor Arc Sign ben Cor ,Mu ben	Contents oduction : Modern Digital Design, CMOS Tec grammable Logic ,Electrical Properties nbinational Logic Design : Boolean Algebra , Log nbinational Logic Design, Timing, Number codes nbinational Logic using VHDL Gate Models : Entiti hitectures ,Identifiers , Spaces and Comments ,Net Iis nal Assignments ,Generics ,Constant and Open Ports , ches, Configurations nbinational Building Blocks : Three-Stat Buffers , D hltiplexers, Priority Encoders , Adders, Parity Checker ches for Combinational blocks FIRST INTERNAL EXAMINATION chronous Sequential Design : Synchronous Sequentia odels of Synchronous Sequential Systems, Algorithmi	ic Gates, es and ts, Test ecoders rs, Test N 1 Systems ic State	4	Exam Marks 15%
I	Pro Cor Cor Arc Sign ben Cor ,Mu ben Syn , Ma	Contents oduction : Modern Digital Design, CMOS Tec grammable Logic ,Electrical Properties nbinational Logic Design : Boolean Algebra , Log nbinational Logic Design, Timing, Number codes nbinational Logic using VHDL Gate Models : Entiti hitectures ,Identifiers , Spaces and Comments ,Net lis nal Assignments ,Generics ,Constant and Open Ports , ches, Configurations nbinational Building Blocks : Three-Stat Buffers , D lltiplexers, Priority Encoders , Adders, Parity Checker ches for Combinational blocks FIRST INTERNAL EXAMINATION chronous Sequential Design : Synchronous Sequentia	ic Gates, es and ts, Test ecoders rs, Test N 1 Systems ic State	8	Exam Marks

IV	 VHDL Models of Sequential Logic Blocks : Latches , Flip-Flops , J K and T Flip Flop , Registers and Shift Registers ,Counters , Memory, Sequential Multiplier, Test benches for Sequential Building Blocks Complex Sequential Systems : Data path / Control Partitioning 	8	15%
	,Instructions, A Simple Microprocessor, VHDL model of a Simple Microprocessor		
	SECOND INTERNAL EXAMINATION		
V	 VHDL Simulation: Event Driven Simulation, Simulation of VHDL models, Simulation modelling issues, Fire Operations. VHDL Synthesis: RTL Synthesis, Constraints, Synthesis for FPGAs, Behavioural Synthesis, Verifying Synthesis Results 	8	20%
VI	Testing Digital Systems : Need for Testing , Fault Models , Fault oriented Test Pattern Generation , Fault Simulation, Fault Simulation in VHDL Design for Testability : Ad Hoc Testability improvements , Structured Design for Test , Built-in-Self-Test , Boundary scan (IEEE 1149 .1)	7	20%
	END SEMESTER EXAM		

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Module I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Estd.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course co	de Course Name	L-T-P -Credits	Year of Intro	oduction
EE366	Illumination Technology	3-0-0-3	2016	
Prerequis	ite: Nil			
Course O	bjectives provide an introduction to the fundament	als of illumination engine	eering and	
	hitectural lighting design.	6	8	
	impart lighting fundamentals, measurem	ent, and technology and	their applicati	on in the
	lysis and design of architectural lighting		11	
Syllabus	APT ARIT	KALAN	A.	
Introduction Measurem Lamp Lur	on of Light, Types of illuminatio ent of Light, Laws of illumination, nen output taking into account voltage	Design of Interior Light and temperature variati	ing, Determinons, Indian	nation of standard
entrance, s	dation and standard practices for illumin taircase, Corridor lighting and industrial			
	atures of Aesthetic Lighting			
Expected				
	its will be able to:			
	ntify the criteria for the selection of lam	os and lighting systems for	or an indoor of	•
	door space	C11 1 4	11 • • •	
	form calculations on photometric performation	mance of light sources an	d luminaires i	or
0	nting design	and applications		
iii. Eva Text Book	aluate different types of lighting designs	and applications		
	C. Pritchard Lighting, Routledge, 2016			
	k L. Lindsey, Applied Illumination Engi	neering PHI 1991		
	in MatthewsIntroduction to the Design as		Electrical Syst	ems
	ringer, 1993	ia marysis or Danaing I	neethear by st	c 1115,
-	A. Cayless, Lamps and Lighting, Routle	dge, 1996		
Reference		0 /	_	
1. IS	CODE 3646			
2. IS	CODE 6665			
	Cour	se Plan		
Module	Contents		Hours	Sem. Exam Marks
Ι	Introduction of Light : Types of it Supplementary artificial lighting and to lighting, Factors affecting the light Colour rendering and stroboscopic e lighting, Lighting systems-direct, in indirect, Lighting scheme, General and	tal lighting, Quality of go ing-shadow,glare,reflecti ffect, Methods of artific direct, semi direct, se	ood on, cial 6	15%
II	Measurement of Light : Definition of intensity, Lumen, Candle power, Illum M.H.S.C.P, Lamp efficiency, Brightn illumination, Inverse square law an Illumination at horizontal and vertica Concept of polar curve, Calculation of in case of linear source, round source an	ination, M.H.C.P, M.S. ess or luminance, Laws nd Lambert's Cosine I Il plane from point sou luminance and illumina	C.P, s of law, 7 rce,	15%

III	Design of Interior Lighting : Definitions of maintenance factor, Uniformity ratio, Direct ratio, Coefficients of utilisation and factors affecting it, Illumination required for various work planes, Space to mounting height ratio, Types of fixtures and relative terms used for interior illumination such as DLOR and ULOR, Selection of lamp and luminance, Selection of utilisation factor, reflection factor and maintenance factor Determination of Lamp Lumen output taking into account voltage and temperature variations, Calculation of wattage of each lamp and no of lamps needed, Layout of lamp luminaire, Calculation of space to mounting height ratio, Indian standard recommendation and standard practices for illumination levels in various areas, Special feature for entrance, staircase, Corridor lighting and industrial building Design of Outdoor Lighting : Street Lighting : Types of street and	8	15%
IV	their level of illumination required, Terms related to street and street lighting, Types of fixtures used and their suitable application, Various arrangements in street lighting, Requirements of good street lighting, Selection of lamp and luminaire, Calculation of their wattage, Number and arrangement, Calculation of space to mounting height ratio, Calculation of illumination level available on road	7	15%
	SECOND INTERNAL EXAMINATION		
V	Design of Outdoor Lighting : Flood Lighting : Terms related to flood lighting, Types of fixtures and their suitable applications, Selection of lamp and projector, Calculation of their wattage and number and their arrangement, Calculation of space to mounting height ratio, Recommended method for aiming of lamp	7	20%
VI	Special Features of Aesthetic Lighting : Monument and statue lighting, Sports lighting, Hospital lighting, Auditorium lighting	7	20%
	END SEMESTER EXAM		

ESIQ.

> 14

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course co	ode Course Name	L-T-P - Credits	Yea Introd	r of uction
EE367	New and Renewable Energy System		20	
Prerequis	ite: Nil	I		
Course O	bjectives:			
• To	give sufficient knowledge about the promising ne	w and renewable sour	ces of en	ergy
• To	equip students in working with projects and to	take up research wo	rk in co	nnected
are	eas.			
Syllabus:	MJMDUULP	VIL/ UVI		
	gy - Solar radiation measurements - Applications			
	rgy - Wind energy -Small Hydro Power (SHP		and bio-	-fuels -
-	ll energy -Power from satellite stations - Hydroger	energy.		
-	Outcome:			
	e students will be able to design and analyse the p	erformance of small is	olated	
	newable energy sources.			
Reference				
	A.M. Saigh (Ed): Solar Energy Engineering, Acad			_
	basi S. A. and N. Abbasi, Renewable Energy Sou	rces and Their Enviro	nmental	Impact,
	entice Hall of India, 2001			
	yle G. (ed.), Renewable Energy - Power for S	ustainable Future, Ox	tord Un	iversity
	ess, 1996	Ducient Development		
	rnest J. and T. Wizelius, Wind Power Plants and 11.	Project Development,	PHI Le	earning,
-	Kreith and J.F. Kreider: Principles of Solar Engine	ering McGraw Hill 1	078	
	N. Tiwari: Solar Energy-Fundamentals, Design,	U		Narosa
	blishers, 2002	woodening and Appl	ications,	141054
	A. Duffie and W.A. Beckman: Solar Energy Therm	al Processes, J. Wiley.	1994	
	nansson T. B., H. Kelly, A. K. N. Reddy and F	-		nergy –
	urces for Fuel and Electricity, Earth scan Publicati			- 61
	an B. H., Non-Conventional Energy Resources, T		9.	
	o S. and B. B. Parulekar, Energy Technology, Kha			
11. Sa	b S. L., Renewable and Novel Energy Sources, MI	Publications, 1995.		
	whney G. <mark>S., Non-Conven</mark> tional Energy Resources			
13. Tiv	wari G. N., Solar Energy- Fundamentals, Desig	n <mark>, Modelling</mark> and Ap	plication	s, CRC
Pre	ess, 2002.			
	Course Plan	5		r
	2014			Sem.
Module	Contents		Hours	Exam Marks
1	Introduction, Classification of Energy Resources;	Conventional Energy		iviai K5
	Resources - Availability and their limitations			
1	Energy Resources – Classification, Advan		-	150/
	•••	onventional Energy	5	15%
	Resources; World Energy Scenario; Indian Energy			
	STORAGE: Sizing and Necessity of Energy Storag			
	SOLAR THERMAL SYSTEMS: Introduction, S	-		
	Sun-Earth Angles, Measurement of Solar		11	150/
II I	Pyranometer and Pyrheliometer .Principle of C		11	15%

and characteristics – Flat plate collectors – Heat transfer processes –		
Solar concentrators (parabolic trough, parabolic dish, Central Tower		
Collector) –performance evaluation		
FIRST INTERNAL EXAMINATION		4
SOLAR ELECTRIC SYSTEMS: Solar Thermal Electric Power Generation -; Solar Photovoltaic - Solar Cell fundamentals, characteristics, classification, construction of module, panel and array. Solar PV Systems - stand-alone and grid connected; Applications - Street lighting, Domestic lighting and Solar Water pumping systems	5	15%
 IV ENERGY FROM OCEAN: Tidal Energy – Principle of Tidal Power, Components of Tidal Power Plant (TPP), Classification of Tidal Power Plants, Advantages and Limitations of TPP. Ocean Thermal Energy Conversion (OTEC): Principle of OTEC system, Methods of OTEC power generation – Open Cycle (Claude cycle), Closed Cycle (Anderson cycle) and Hybrid cycle (block diagram description of OTEC); Site-selection criteria, Biofouling, Advantages & Limitations of OTEC. 	7	15%
SECOND INTERNAL EXAMINATION		
 WIND ENERGY: Introduction, Wind and its Properties, History of Wind Energy, Wind Energy Scenario – World and India. Basic principles of Wind Energy Conversion Systems (WECS), Classification of WECS, Parts of WECS, Derivation for Power in the wind, Electrical Power Output and Capacity Factor of WECS, Advantages and Disadvantages of WECS 	7	20%
 BIOMASS ENERGY: Introduction, Photosynthesis process, Biomass fuels, Biomass conversion technologies, Urban waste to Energy Conversion, Biomass Gasification, Biomass to Ethanol Production, Biogas production from waste biomass, factors affecting biogas generation, types of biogas plants – KVIC and Janata model; Biomass program in India. Small hydro power: Classification as micro, mini and small hydro projects - Basic concepts and types of turbines - Design and selection considerations. EMERGING TECHNOLOGIES: Fuel Cell, Small Hydro Resources, Hydrogen Energy, alcohol energy, nuclear fusion and power from satellite stations. 	7	20%
END SEMESTER EXAM		<u> </u>

Maximum Marks: 100

2014

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions. One question from each module of Module I - IV; and two each from Module V & VI. Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course c	ode Course Name L-T-P Credit		Yea Introd	r of uction
EE36	8 SOFT COMPUTING 3-0-0-	3	20	16
Prerequi	site: Nil			
-	Dbjectives			
•	To provide the students with the concepts of soft computing techn	ique	s such as	neural
	networks, fuzzy systems, genetic algorithms	1940	s saon as	neurui
<u>a 11 1</u>	networks, ruzzy systems, genetic argorithms			
Syllabus		-		r
	on to Soft Computing and Neural Networks, Fuzzy Sets and Fuzzy Logic:			leuro-
Fuzzy Mo	delling, Machine Learning, Machine Learning Approach to Knowledge A	Acqui	Isition	
Evnort	ed outcome.			
	ents will be able to get an idea on :	Acres 1		
	Artificial Intelligence, Various types of production systems, characteristics	of	roduction	
	systems.	or p	roduction	
	Neural Networks, architecture, functions and various algorithms involved.			
	Fuzzy Logic, Various fuzzy systems and their functions.			
iv. (Genetic algorithms, its applications and advances			
V.	The unified and exact mathematical basis as well as the general principles	of va	rious soft	
	computing techniques.			
Text Bo				
	Digital Neural Network -S.Y Kung, Prentice-Hall of India			
	lames A. Freeman and David M. Skapura, "Neural Networks Algorithms,	Appl	ications, a	and
	Programming Techniques", Pearson Edn.,	a a	a ii	
	lyh-Shing Roger Jang, Chuen-Tsai Sun, Eiji Mizutani, "Neuro-Fuzzy and S	Soft	Computin	g´´,
	Prentice-Hall of India,			
Referen	Ices: Amit Konar, "Artificial Intelligence and Soft Computing", First Edition,CI		raga 2000	`
	David E. Goldberg, Genetic Algorithms in Search, Optimization and Mach			
	Addison Wesley	inie i	Carining	,
	George J. Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic-Theory and Ap	plica	tions" Pr	entice
	Hall	pirea	,11	••••••
	Mitchell Melanie, "An Introduction to Genetic Algorithm", Prentice Hall,	1998.		
	Simon Haykin, "Neural Networks: A Comprehensive Foundation", Prentic			
	Course Plan			
				Sem.
Module	Contents		Hours	Exam
	Introduction To Soft Computing And Neural Networks : Evolution	of		Marks
	THE ADDRESS OF THE ADDRESS AND INCIDENT ADDRESS AND ADDRESS ADDRE	1.71		
Ι	Computing - Soft Computing Constituents – From Conventional AI	to	7	15%
Ι	Computing - Soft Computing Constituents – From Conventional AI Computational Intelligence - Adaptive Networks – Feed forwa	to	7	15%
I	Computing - Soft Computing Constituents – From Conventional AI	to rd	7	15%
I	Computing - Soft Computing Constituents – From Conventional AIComputational Intelligence - Adaptive Networks – Feed forwaNetworks – Supervised LearningNeural Networks – Radia Basis Function Networks - Reinforceme	to rd nt	7	15%
I 	Computing - Soft Computing Constituents – From Conventional AI Computational Intelligence - Adaptive Networks – Feed forwa Networks – Supervised Learning	to rd nt	7	15%
	Computing - Soft Computing Constituents – From Conventional AIComputational Intelligence - Adaptive Networks – Feed forwaNetworks – Supervised LearningNeural Networks – Radia Basis Function Networks - ReinforcemeLearning – Unsupervised LearningNeural Networks – AdaptiveResonance architectures.	to rd nt		
	Computing - Soft Computing Constituents – From Conventional AIComputational Intelligence - Adaptive Networks – Feed forwaNetworks – Supervised LearningNeural Networks – Radia Basis Function Networks - ReinforcemeLearning – Unsupervised LearningNeural Networks – Adaptive	to rd nt		
	Computing - Soft Computing Constituents - From Conventional AIComputational Intelligence - Adaptive Networks - Feed forwaNetworks - Supervised LearningNeural Networks - Radia Basis Function Networks - ReinforcemeLearning - Unsupervised LearningNeural Networks - AdaptiveResonance architectures.Fuzzy Sets And Fuzzy Logic: Fuzzy Sets - Operations on Fuzzy Sets -	to rd nt		
	Computing - Soft Computing Constituents – From Conventional AIComputational Intelligence - Adaptive Networks – Feed forwaNetworks – Supervised LearningNeural Networks – Radia Basis Function Networks - ReinforcemeLearning – Unsupervised Learning Neural Networks – AdaptiveResonance architectures.Fuzzy Sets And Fuzzy Logic: Fuzzy Sets – Operations on Fuzzy Sets –Fuzzy Relations - Fuzzy Rules and Fuzzy Reasoning	to rd nt ve		
II	Computing - Soft Computing Constituents – From Conventional AI Computational Intelligence - Adaptive Networks – Feed forwa Networks – Supervised Learning Neural Networks – Radia Basis Function Networks - Reinforceme Learning – Unsupervised Learning Neural Networks – Adaptive Resonance architectures. Fuzzy Sets And Fuzzy Logic: Fuzzy Sets – Operations on Fuzzy Sets – Fuzzy Relations - Fuzzy Rules and Fuzzy Reasoning FIRST INTERNAL EXAMINATION	to rd nt ve	7	15%
	Computing - Soft Computing Constituents – From Conventional AI Computational Intelligence - Adaptive Networks – Feed forwa Networks – Supervised Learning Neural Networks – Radia Basis Function Networks - Reinforceme Learning – Unsupervised Learning Neural Networks – Adaptiv Resonance architectures. Fuzzy Sets And Fuzzy Logic: Fuzzy Sets – Operations on Fuzzy Sets – Fuzzy Relations - Fuzzy Rules and Fuzzy Reasoning FIRST INTERNAL EXAMINATION Fuzzy Inference Systems – Fuzzy Logic – Fuzzy Expert Systems – Fuzzy	to rd nt ve zzy		

IV	Data Clustering Algorithms – Rulebase Structure Identification Neuro- Fuzzy Control.	7	15%	
SECOND INTERNAL EXAMINATION				
V	Machine Learning : Machine Learning Techniques – Machine Learning Using Neural Nets – Genetic Algorithms (GA)	7	20%	
VI	Applications of GA in Machine Learning - Machine Learning Approach to Knowledge Acquisition. Support Vector Machines for Learning – Linear Learning Machines – Support Vector Classification – Support Vector Regression - Applications.	7	20%	

END SEMESTER EXAM

QUESTION PAPER PATTERN:

Maximum Marks: 100 Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course N	No. Course Name	L-T-P -Credits		ear of oduction
EE369	High Voltage Engineering	3-0-0-3		2016
Prerequis				
Course O			_	
volta • To u	nderstand generation and measurement te ages inderstand various types of testing technic voltage lab and the grounding of impulse	ques used in power equipme		_
Syllabus			1	
Generation	n of HVDC, HVAC and impulse wave for chniques- testing of power equipments	-		
Expected				
	e students will know several of methods o ethods used in power equipments and desig	• •	-	sting
Text Boo	ok: C.L Wadhwa <i>High voltage Engineering</i> ,	New age international (P) Ite	1, 2007	
Reference	2051		-	
1. Di S 2. Ku In 3. Na	eter Kind, Kurt Feser, "High voltage to eries, New Delhi, 1999. Iffel, E., Zaengl, W.S. and Kuffel J., "High ndia P Ltd, 2005 Nidu M.S. and Kamaraju V., "High voltage Company Ltd., New Delhi, 2004.	h Voltage Engineering Funda	imentals'	", Elsvier
	Cours	e Plan	17 C	
Module	Contents		Hours	Sem.
	Estd			Exam Marks
Ι	Generation and transmission of electric testing voltages-AC to DC conversion – circuits – voltage multiplier circuits – voltage regulation – ripple factor – Van de	rectifier circuits – cascaded Cockroft-Walton circuits –	7	20%
Π	Generation of high AC voltages-Testing testing transformer, cascaded transform cascaded transformer – generation of hig series resonance circuit – resonant transfo	transformer – single unit er – equivalent circuit of gh frequency AC voltages-	7	20%
	FIRST INTERNAL E			
III	Generation of impulse voltages-Marx g generator circuit –analysis of various circuits - multistage impulse generator c generator circuits – impulse current gener	enerator – Impulse voltage impulse voltage generator frcuits – Switching impulse	7	15%
IV	Peak voltage measurements by sphere ga – generating voltmeters and field sensors	ps – Electrostatic voltmeter	7	15%

	- voltage dividers and impulse voltage measurements- measurement		
	of impulse currents		
	SECOND INTERNAL EXAMINATION		
V	Objectives of high voltage testing, Classification of testing methods- self restoration and non-self restoration systems-standards and specifications, Measurement of dielectric constant and loss factor, Partial discharge measurements-Basic partial discharge(PD) circuit – PD currents- PD quantities - Corona and RIV measurements	7	15%
VI	Testing of insulators, bushings, air break switches, isolators, circuit breakers, power transformers, surge diverters, cables -testing methodology. Classification of high voltage laboratories, Voltage and power rating of test equipment, Layout of high voltage laboratories, Grounding of impulse testing laboratories.	10	15%
END SEMESTER EXAM			

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Module I - IV; and two each from Module V & VI. Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course code	Course Name	L-T-P - Credits	Year of Introduction		
EE372	Biomedical Instrumentation	3-0-0-3	2016		
Prerequisite: Nil					

Course Objectives

• To give a brief introduction to human physiology and various instrumentations system for measurement and analysis of physiological parameters.

Syllabus:

Development of biomedical instrumentation, Sources of bioelectric potentials, Bio potential electrodes, Electro-conduction system of the heart, Measurement of blood pressure, Measurement of heart sounds, Cardiac pacemakers, defibrillators, Electro encephalogram, Muscle response, Respiratory parameters, Therapeutic Equipments, Imaging Techniques, Instruments for clinical laboratory, Electrical safety, tele- medicine

Expected outcome.

Text Book:

- 1. J. G. Webster, Medical Instrumentation, Application and Design, John Wiley and Sons
- 2. L. Cromwell, F. J. Weibell and L. A. Pfeiffer, Biomedical Instrumentation Measurements, Pearson education, Delhi, 1990.

References:

- 1. R. S. Khandpur, Handbook of Biomedical Instrumentation, Tata Mc Graw Hill
- 2. J. J. Carr and J. M. Brown, Introduction to Biomedical Equipment Technology, Pearson Education

	Course Plan		
Module	Contents	Hours	Sem. Exam Marks
I	Development of biomedical instrumentation, biometrics, man instrument system components block diagram, physiological systems of the body (brief discussion on Heart and cardio vascular system, Anatomy of nervous system, Physiology of respiratory systems) problems encountered in biomedical measurements. Sources of bioelectric potentials – resting and action potentials - propagation of action potentials – bio electric potentials example (ECG, EEG, EMG, ERG, EOG,EGG etc.)	7	15%
П	Bio potential electrodes – theory – microelectrodes – skin surface electrodes – needle electrodes – biochemical transducers – transducers for biomedical applications. Electro-conduction system of the heart. Electro cardiography – electrodes and leads – Einthoven triangle, ECG read out devices, ECG machine – block diagram.	7	15%
	FIRST INTERNAL EXAMINATION		
III	Measurement of blood pressure – direct and indirect measurement – oscillometric measurement –ultrasonic method, measurement of blood flow and cardiac output, plethysmography –photo electric and impedance plethysmographs Measurement of heart sounds –phonocardiography.	7	15%

IV	Cardiac pacemakers – internal and external pacemakers, defibrillators. Electro encephalogram –neuronal communication – EEG measurement. Muscle response– Electromyogram (EMG) – Nerve Conduction velocity measurements- Electromyogram Measurements. Respiratory parameters – Spiro meter, pneumograph	7	15%
	SECOND INTERNAL EXAMINATION		
V	Ventilators, heart lung machine, hemodialysis, lithotripsy, infant incubators X-rays- principles of generation, uses of X-rays- diagnostic still picture, fluoroscopy, angiography, endoscopy, diathermy. Basic principle of computed tomography, magnetic resonance imaging system and nuclear medicine system – radiation therapy. Ultrasonic imaging system - introduction and basic principle.		20%
VI	Instruments for clinical laboratory – test on blood cells – chemical tests - Electrical safety– physiological effects of electric current – shock hazards from electrical equipment – method of accident prevention, introduction to tele- medicine.	6	20%

END SEMESTER EXAM

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5) = 40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

2014