Course c	ode	Course Name	L-T-P -Credits	Year of Intr	oduction
EE401	l	Electronic Communication	3-0-0-3	2010	6
Prerequis	site:	Nil			
Course O	bjec	tives			
• To	intro	oduce the applications of communication	n technology.		
• To	und	erstand the methods and techniques use	d in communication fie	eld.	
Syllabus:					
AM and I	FM f	undamentals-AM and FM transmitters	and receivers-Televisi	on and radar	systems-
Digital co	mmu	nication-Satellite communication-Cellu	ılar telephone.	ANA	
Expected	outo	ome		11.1.1	
The stude	nts w		C	1. Au	
1.	Uno	derstand the need of modulation in trans	sterring a signal throug	in either wirel	ess or
ii	Ro Ro	able to apply applog modulation technic	aues and receiver fund	omentals in a	nalog
11.	con	able to apply analog modulation technic	ques and receiver runu	amentais in ai	lalog
iii	Be	to apply baseband digital encoding & d	ecoding techniques in	the storage / t	ransmis-
	sio	of digital signal through wired channe		ane storage / a	
iv.	Un	lerstand the performance of communication	ation systems in the pro-	esence of nois	e and in-
	terf	erence	•		
Text Bool	ks:				
1. Ke	ennec	ly G., <i>Electronic Communication Syster</i>	ns, McGraw-Hill, New	York, 2008.	
2. Ro	ody	and Coolen, <i>Electronic Communicatior</i>	n, Prentice Hall of India	a LTD., New I	Delhi,
20	07.				
Reference	es:			11 CT 11 TT	DN
1. W	iiiian	n Scheweber, <i>Electronic Communicatio</i>	<i>n Systems</i> , Prentice Ha	II of India LI	D, New
2 W	ovno	2004. Tomasi Electronic Communication Su	stams Prontice Hall of	India LTD N	
$\mathbf{D} \in \mathbf{D} $	ayne Alhi '	2004	stems, i renuce fran of	iliula LID, N	Cw
3. Fr	ank F	R. Dungan, <i>Electronic Communication</i>	Systems, 3/e, Vikas Pul	olishing Hous	e. 2002.
4. Si	mon	Haykins, Communication Systems, John	n Wiley, USA, 2006.		-,
5. Br	uce (Carlson. Communication Systems, Tata	McGraw Hill, New De	lhi, 2001.	
6. Ta	ub aı	nd Schilling, Principles of Communicat	ion Systems, McGraw-	Hill, New Yor	rk, 2008.
7. Ar	iokh	Singh, Principles of Communication E	ngineering, S. Chand a	nd Company	Ltd.,
De	elhi.	ESTO			
	1	Course	Plan		
Module		Contents		Hours	Sem.
					Exam
	A 3 4	1 FM from January 4 - Ja			Marks
I		Erequency spectrum vector repres	entation nower relat	ions	
		relation of AM - DSB DSB/SC SSB	VSB	6	15%
	50		V D D	0	1570
	FM	- frequency spectrum - power relation	S		
II	AM	and FM transmitters and receivers			
	Bloo	ck diagrams of low power and high pov	ver AM transmission -	AM	
	rece	ivers: straight receivers super hetrod	yne receiver - choice	e of	
	inte	mediate frequency - simple AVC circuit	t	8	15%
	Bloo	ck diagrams of direct FM transmitter and	nd Armstrong transmit	ter -	
	FM	receivers (balanced -	1 \		
	slop	e detector and Foster-Seely discriminat	or only).		
		FIRST INTERNAL EX	AMINATION		

ш	Television and radar systems Principles of television engineering - Requirements and standards – need for scanning - types of camera tubes and picture tubes - B/W and colour systems - PAL - CCTV - Cable TV-high definition television. Radar and navigation: principle of radar and radar equation, block schematics of pulsed radar.	8	15%
IV	Digital communication: Principles of digital communication – - Sampling process-pulse modulation Techniques- sampling process-PAM, PWM and PPM concepts - PCM encoder and decoder Applications of data communication	6	15%
	SECOND INTERNAL EXAMINATION		
V	Satellite communication		
	Multiple access (MA) techniques-FDMA, TDMA, CDMA, SDMA - applications in satellite communication wire, MA techniques applications in wired communication. in satellite communication, earth station; Fibers – types: sources, detectors used, digital filters, optical link	8	20%
VI	Cellular telephone - Basic concepts, frequency reuse, interference cell splitting, sectoring, cell system layout, cell processing. Fibers – types: sources, detectors used, digital filters, optical link: Bluetooth, Zig-Bee, GPS, Wi-Fi, Wi-Max based communication	6	20%
END SEMESTER EXAM			

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI. Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course co	ode Course Name	L-T-P - Credits	Year	of of		
EE40 2	Special Electrical Machines	3-0-0-3	2016			
Prerequis	site: Nil			-		
Course O	bjectives					
	• To get an overview of some of the special machines for control and industrial					
	applications					
Syllabus	ADIADDILL IZ	A T A A				
AC Serv	AC Servomotors – construction – operation - DC servomotors – Stepper motor – operation –					
types-mod	les of excitation – AC series motor – Universal mo	otor – Hysteres	18 motor – F	S motor		
Linear mc	switched reluctance motor – reinfahent magnet i	\mathcal{K} motor – B	Tusilless DC			
Expected	outcome.	TY				
•	• The students will gain knowledge in the constructio	n and principle	of operation of	of certain		
	special electrical machines having various application	ns.	1			
Text Boo	k:					
E. G.	Janardhanan, 'Special Electrical Machines' PHI Learnin	ng Private Limito	ed.			
Reference	es:					
1. Irv	ring L. Kosow.'Electrical Machinery and Transformers',	Oxford Science	Publications	•		
2. T.	J. E. Miller, 'Brushless PM and Reluctance Motor Drive.	s'.C.Larendon F	Press, Oxford.			
3. Th	eodore Wildi, 'Electric Machines, Drives and Power Sys	stems', Prentice	Hall India Lto	l. Honol Edu		
4. Ve	Course Plan	Motors .McGrav	v Hill Interna	tional Edn.		
	Course Fran			Sem.		
Module	Contents		Hours	Exam Marks		
	AC Servomotors- Construction-principle of	operation -	-			
	performance characteristics - damped AC servor	motors – Drag	3	15%		
T	cup servomotor – applications.		7			
I	DC servomotors – field and armature controlled DC servomotors – permanent magnet armature controlled – series split field DC			13 %		
	servomotor.					
	Stepper motors – Basic principle – different type	es – variable				
	reluctance- permanent magnet – hybrid type –	comparison –				
II	theory of operation – monofilar and bifilar winding	gs – modes of	7	15%		
	excitation – drive circuits – static and dynamic ch	aracteristics –				
	applications ELDSTE INTERNAL EXAMIN	ATION				
	FIRST INTERNAL EXAMINA	ATION				
	Single phase special electrical machines – AC	series motor	1			
	construction – principle of working – phasor diagr	ram – umversa		150/		
111		c	/	15%		
	Hysteresis motor- constructional details- principle	of operation -	-			
	torque-slip characteristics – applications.	•				
	Keluctance motors – principle of operation – tord	que equation -	-			
IV	motors – principle of operation – power conver	rter circuits	2 7	15%		
	torque equation – different types – comparison – an	plications				
IV	torque slip characteristics-applications. Switch motors – principle of operation – torq	que equation - ned reluctance erter circuits -	2 7	15%		
	torque equation – different types – comparison – ap	plications.				

SECOND INTERNAL EXAMINATION				
V	Permanent Magnet DC Motors – construction – principle of working. Brushless dc motor – construction – trapezoidal type-sinusoidal type – comparison – applications.	7	20%	
VI	Linear motors – different types – linear reluctance motor – linear synchronous motors – construction – comparison. Linear induction motors – Expression for linear force – equivalent circuit – applications.	7	20%	
END SEMESTED EVAM				

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Estd.

COURS CODE	E COURSE NAME	L-T-P- CREDITS	YE INTRO	AR OF DUCTION
EE403	DISTRIBUTED GENERATION AND SMART	3-0-0-3		2016
	GRIDS	TAA	4	
Prerequis	ite: Nil	LAN	1	
Course of	ojective.	IC A	1	
• To	develop a conceptual introduction to various distributed	l generation s	ystems, r	nicro grids,
sm	art grids and their control	Y		
Syllabus:				
Introducti	on to distributed generation and smart grids - Distributed	d Energy Res	ources –	Micro Grids
and their	control – Protection issues for Microgrids - Smart Grid	s: Componen	ts – NIS'	Γ Reference
architectu	e – Smart meters - Wide Area Measurement System (W	VAMS), Phas	se Measu	rement Unit
(PMU) - 0	lemand response- Demand Side Management - Smart S	ubstations, H	IAN, NA	N, SANET,
Cloud con	puting in smart grid – Power Quality issues with smart g	grid		
Expected	Outcome:			
The stude	nts will be able to:			
i. Ex	plain various distributed generation systems			
ii. Ur	derstand the microgrids and their control schemes			
iii. Ur	derstand various developments happening in the field of	Smart Grids.		
TEXT B	DOKS/REFERENCES:			
1. Al 62	Keyhani, Design of Smart Power Grid Renewable Ener, 761-7, Wiley	gy Systems, I	SBN: 97	8-0-470-
2. Jai	nes Momoh, Smart Grid: Fundamentals of Design and A	nalysis, ISBN	<mark>1:</mark> 978-0-4	470-88939-
8,	Wiley			
3. R. M	C. Durgan, M. F. Me Granaghen, H. W. Beaty, "Electric Graw-Hill	al Power Sys	tem Qual	ity",
4. Re	mus Teodorescu, Marco Liserre, Pedro Rodriguez, Grid	Converters fo	or Photov	oltaic and
W	nd Power Systems, ISBN: 978-0-470-05751-3, Wiley			
5. S.	Chowdhury, S.P. Chowdhury and P. Crossley, Microgrid	ls and Active	Distribut	ion
Ne	tworks, ISBN 978-1-84919-014-5, IET, 2009			
	COURSE PLAN			
Module	Contents		Hours	End.
				Sem.
				Exam.
				Marks
I	Distributed generation – Introduction - Integration of a	listributed		1.1001 110
-	generation to Grid – Concepts of Micro Grid - Typical	Microgrid	7	15%
	configurations - AC and DC micro grids - Intercon	nection of		/ •
	Microgrids - Technical and economical advantages of M	licrogrid -		

	Challenges and disadvantages of Microgrid development Smart Grid: Evolution of Electric Grid - Definitions and Need for Smart Grid, Opportunities, challenges and benefits of Smart		
II	Grids Distributed energy resources: Introduction - Combined heat and		
	power (CHP) systems - Solar photovoltaic (PV) systems – Wind energy conversion systems (WECS) - Small-scale hydroelectric power generation - Storage devices: Batteries: Lead acid, nickel metal hydrate, and lithium ion batteries , ultra-capacitors, flywheels Control of Microgrids: Introduction to Central Controller (CC) and Microsource Controllers (MCs) - Control functions for microsource controller, Active and reactive power control, Voltage control, Storage requirement for fast load tracking, Load sharing through power-frequency control		15%
III	Protection issues for Microgrids: Introduction, Islanding, Different islanding scenarios, Major protection issues of stand- alone Microgrid - Impact of DG integration on electricity market, environment, distribution system, communication standards and protocols. Smart Grid: Components – NIST Smart Grid Reference Architecture Introduction to Smart Meters, Electricity tariff – one part tariff, two tariff and maximum demand tariff - Dynamic pricing: time- of-use (TOU) pricing, critical-peak pricing (CPP) and Real Time Pricing- Automatic Meter Reading(AMR), Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation. Intelligent Electronic Devices (IED) and their application for monitoring & protection, Wide Area Measurement System (WAMS), Phase Measurement Unit (PMU).	7	15%
IV	Smart energy efficient end use devices-Smart distributed energy resources- Load Curves-Load Shaping Objectives-Methodologies - Peak load shaving - Energy management-Role of technology in demand response- Demand Side Management – Numerical Problems	7	15%
V	Advanced Metering Infrastructure (AMI), Home Area Network (HAN), Neighborhood-Area Networks (NANs), Sensor and Actuator Networks (SANETs) Smart Substations, Substation Automation, IEC 61850 Substation Architecture, Feeder Automation.	7	20%

VI	Cloud computing in smart grid: Private, public and Hybrid cloud.Cloud architecture of smart grid.Power quality: Introduction - Types of power quality disturbances- Voltage sag (or dip), transients, short duration voltage variation,		
	Long duration voltage variation, voltage imbalance, waveform distortion, and voltage flicker - Harmonic sources: SMPS, Three phase power converters, arcing devices, saturable devices, fluorescent lamps, harmonic indices (THD, TIF, DIN, C – message weights) Power quality aspects with smart grids.	8	20%
	UNIVERSILI		

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course	Course Name L-	T-P -	Ye	ar of duction
EE404	INDUSTRIAL INSTRUMENTATION AND 3-)-0-3	2	016
	AUTOMATION		_	010
Prerequisite: Nil				
Course O	bjectives	N	6	
	• To impart knowledge about Industrial instrumentation and a	itomat	tion	
Syllabus:	TROUBLOCCIONE	12	*	
Dynamic	characteristic of instrumentation- Transducers: Characteristics,	Appli	cations	– Nano
instrumen	ation - signal conditioning, MEMS, Virtual instrumentation-	Autom	nation s	system -
actuators -	- sequence control, PLC			
Expected	Outcome:			
After the c	completion of the course, the students will be able to:			
1. 	Select instruments and transducers for various physical variable	.		
11. 	Get an insight on data acquisition, processing and monitoring sy	stem		
111. 	Design various signal conditioning systems for transducers.			
1V.	Analyze dynamic responses of various systems.			
V.	Understand the programming realization of PI C			
VI. Toyt bool			-	
1 Cu	rtis D Johnson "Process Control Instrumentation Technology"	рHI 10	986	
1. Cu 2 Du	eblin F.O. 'Measurement Systems: Application and Design Fo	urth F	dition	McGraw
2. DC	Newvork 1992		untion, .	
3 DV	/S. Murty 'Transducers and Instrumentation' Second Edition	рні Г	earning	Pvt Ltd
J. D. Ne	w Delhi 2013		curning	I vi Liu
4. Ma	dhuchhanda Mitra, Samariit Sengupta, 'Programmable Logic Co	ntrolle	rs and I	ndustrial
Au	tomation An Introduction', Penram International Publishing (Indi	a) Pvt	Ltd., 20	09
5. Mi	ckell. P. Groover 'Automation, Production and computer inte	grated	manufa	acturing'
Pro	entice Hall of India, 1992			C
6. Pa	ranabis, D., 'Principles of Industrial Instrumentation', Second	Editio1	n Tata 🛛	McGraw
Hi	ll Publishing Co. Ltd New Delhi			
7. Ro	bert B. Northrop, 'Introduction to instrumentation and measureme	ents', C	CRC, Ta	ylor and
Fra	uncis 2005			
Reference	s:			
1. G.	K.McMillan, 'Process/Industrial Instrument and control and han	l book	' McGı	aw Hill,
Ne	w York,1999			
2. Mi	chael P .Lucas, 'Distributed Control system', Van Nastrant Rei	nhold	Compa	ny, New
Yo	rk			
	Course Plan			
				Sem.
Module	Contents	I	Iours	Exam
				Marks
	Introduction to Process Control - block diagram of process cont	ol		
J	loop, definition of elements. Sensor time response - first a	nd	6	15%
	second order responses.		5	2070
	Review of Transducers: Characteristics and Choice of transduc	er-		

	factors influencing choice of transducer		
П	Applications of Transducers Displace measurement: Resistance potentiometer, Capacitive and Inductive. Capacitive differential pressure measurement Torsional, shearing stress and rotating shaft Torque measurement using strain gauge. Flow measurement :Hotwire anemometer, constant resistance Constant current type Eddy current sensors, Variable reluctance tachometers Phase measurement :Analog and digital phase detectors Nano Instrumentation	8	15%
	FIRST INTERNAL EXAMINATION		
III	Signal conditioning circuits-Instrumentation amplifiers- Unbalanced bridge. Bridge linearization using op amp Precision rectifiers, Log amplifiers, Charge amplifiers, Isolation amplifier, Switched capacitor circuits, Phase sensitive detectors, Noise problem in instrumentation and its minimisation	7	15%
IV	Micro Electromechanical system (MEMS) Advantages and Applications, MEMS micro sensors and actuators, Manufacturing process: Bulk micro machining and surface micromachining, MEMS accelerometers Virtual instrumentation system: architecture of virtual instruments – Virtual instruments and traditional instruments – concepts of graphical programming	7	15%
	SECOND INTERNAL EXAMINATION		
V	Overview of Automation System - Architecture of Industrial Automation Systems, Different devices used in Automation Actuators, definition, types, selection. Pneumatic, Hydraulic, Electrical, Electro-Pneumatic and valves , shape memory alloys	7	20%
VI	Introduction to Sequence Control, PLCs - Working, Specifications of PLC Onboard/Inline/Remote IO's, Comparison of PLC & PC, Relay Ladder Logic- PLC Programming- realization of AND, OR logic, concept of latching, Introduction to Timer/Counters, Exercises based on Timers, Counters. Basic concepts of SCADA, DCS and CNC	7	20%
END SEMESTER EXAM			

1-1

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course co	ode	Course Name	L-T-P - Credits	Ye Intro	ear of duction
EE405	5	Electrical System Design	3-1-0-4	2	2016
Prerequis	site :	Nil			
Course O To To ele To	 Course Objectives To gain the knowledge of acts and rules used for regulating the electrical supply in our country. To impart sound knowledge in the design and estimation of low voltage and medium voltage electrical installations. 				
• To ear	gain gain rthing	the knowledge of Earthing designs in different installation systems.	s and the star	ndard dim	ensions of
Syllabus Electrical s Domestic I high rise b installation	syster Instal buildi is and	n design practices – general awareness of IS Codes, Ele lations, Motor Installations, 11 kV substation installations ng installations. Standby generator selection and their I their accessories. Types of earthing, lightning arresters, fi	ctricity Acts Cinema the nstallations. re fitting and	& Rules atre, audi Undergro lifts.	, NEC etc. torium and ound cable
Expected	outo	come			
The studen i. Kn ii. To dif	its wi now th o prep fferen	ll ne basic Rules and regulations in electrical installations. pare the schematic diagram, installation plan, quantity nt electrical installations.	of material	s and esti	mate for
Text Boo	k:				
1. J.	B. G	upta, A Course in Electrical Installation Estimating an	d Costing, S	S.K. Katai	ria &
So 2. K. edi 3. M.	ns; R B. R ition .K.Gi	eprint 2013 edition (2013). aina, S. K. Bhattacharya, Electrical Design Estimating Cos (2010). ridharan, Electrical Systems Design, , M/s I K Internation	ting, NEW A	AGE; Rep ers, New	rint Delhi, 2nd
edi	ition,	2016			
Data Boo M K Giridl Delhi, 201	k (A haran 1	, Electrical Systems Design Data Hand book, , M/s I K Int	ernational P	ublishers .	, New
Reference	es:				
1. Na 2. Re 3. S.I	tiona levan L.Up	I Electric Code, Bureau of Indian Standards publications, I It Indian Standard – specifications (IS – 732, IS – 746, IS – pal, Electrical Wiring Estimating & Costing, Khanna I	986. 3043, IS – 9 Publishers (20	900), etc. 008)	
	_	Course Plan			
Module		Contents		Hours	Sem. Exam Marks
Ι	Ge 2, 1 sup Reg Ene - sc volt	neral awareness of IS Codes (IS 3043, IS 732, IS 2675, IS 2309), The Indian Electricity Act 1910, The Indian ply Act 1948, Indian Electricity Rules 1956, The gulatory Commission Act 1998, Electricity Act 2003, argy Efficiency (BEE) and its labeling. National Electric C cope and safety aspects applicable to low and medium age installations, Electric services in buildings, Classi ages, standards and specifications.	S 5216-P1- Electricity Electricity Bureau of ode (NEC) (domestic) fication of	8	15%
п	Safe Ger dwe calc boa	ety aspects applicable to low and medium voltage in heral aspects of the design of electrical installations for ellings (low and medium voltage installations)–conneculation, sub circuit determination, selection of main of rd, sub distribution board, MCB, ELCB, MCCB and cab	stallations. r domestic ected load listribution les for sub	10	15%

	circuits. Pre-commissioning tests of domestic installations.		
	FIRST INTERNAL EXAMINATION		
III	Medium and HV installations – selection of cables and cable glands, guidelines for cable installation in detail. Panel boards: LT & HT control panel boards. Installation of induction motors: Design of distribution systems with light power and motor loads. Design of automatic power factor correction (APFC) Panel. Selection and installation of transformers, switchgears and protective devices – Design of indoor and outdoor 11 kV substation upto 630 kVA.	10	15%
IV	Air-conditioning loads and its specifications. Energy conservation techniques. Selection of standby generator – installation and its protection. Introduction to Automatic Main Failure (AMF) System. Precommissioning tests of cables, transformers and generators.	8	15%
SECOND INTERNAL EXAMINATION			
V	Design of earthing system for an HT consumer, Dimensions and drawings of typical earth electrodes (1) Pipe Earthing, (2) Plate Earthing. Touch, Step and Transfer potentials at EHT Sub-Stations, Earth-mat, installations of special equipment like X-Ray, Neon-Sign, Basics of lightning arresters.	8	20%
VI	Design of illumination systems – Yard lighting, street lighting and flood lighting. Kerala Cinema Regulation Act – 1958, design and layout of installation for recreational or assembly buildings, cinema theatre and high rise building. Design of Electrical system related to firefighting, lifts and escalators.	10	20%

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Estd

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course of	ode. Course Name	L-T-P - Credits	Y Intro	ear of
EE4 0	7 DIGITAL SIGNAL PROCESSING	3-0-0-3		2016
Prereau	isite : Nil	0000		
Course	Dhiectives			
course	• To impart knowledge about digital signal processing an	d its applica	ations in	
	engineering	. 105 upp1100		
Syllobus				
Introduct	ion to signals and systems Discrete Fourier Transforms Fa	st Fourier T	ransfor	me
Introduct	ion to FIR and IIR systems - FIR filter design - Finite word h	enoth effec	f_{s} in d^{2}	ins - ioital
Filters -	ntroduction to FDA Toolbox in MATLAB - Introduction to T	MS320 Far	nilv - D	esion &
Impleme	ntation and Filter Structures - Introduction to Code Composer	Studio	iiiiy D	csign œ
Expect	ad outcome	Studio		
The stud	ents will be able to:			
i.	Analyse DT systems with DFT			
ii.	Design digital filters IIR and FIR filters			
iii.	Analyse finite word length effects in signal processing			
iv.	Design filters using Matlab FDA tool box			
v.	Understand Digital Signal Controllers and their Application	s		
Text B	ooks:			
1	Alan V.Oppenheim, Ronald W. Schafer & Hohn. R.Back,	"Discrete 7	Time Sig	gnal
	Processing", Pearson Education, 2nd edition, 2005.			
2	Emmanuel.CIfeachor, & Barrie.W.Jervis, "Digital Signal	l Processing	g", Sec	ond editi
	on, Pearson Education / Prentice Hall, 2002.			
3	John G. Proakis & Dimitris G.Manolakis, "Digital Signal Pr	ocessing P	rinciple	s,
.	Algorithms & Applications", Fourth edition, Pearson education	ion / Prentic	e Hall,	2007
Referen				
	D. D. Voiduanathan, Multingta Sustana, & Eilter Banka, Processing	, PHI, 2006	~1~~~~~~~	1 al:ffa
2	NL 1002	ce Hall, Eng	giewood	ı chiis,
2	NJ, 1995. S.K. Mitra Digital Signal Processing A Computer Pased at	pproach Ta	to Ma C	Low Uill
5	1008	opioacii, ra		Jiawiiii,
	1998. ESIU.			
	Course Plan			q
Module	Contents	×	Hours	Sem. Exam Marks
	Introduction to signals and systems - Discrete Fourier tr	ansform:		
	Frequency domain sampling. Discrete Fourier transform (DF	T): DFT		
	pair, properties of DFT, frequency response analysis of sign	als using		
Ι	the DFT, circular convolution using DFT, linear filtering l	based on	7	15%
	DFT			
	Fast Fourier transform (FFT); Introduction, Radix -2 decin	nation in		
	time FFT algorithm, Radix-2 decimation in frequency algorithm	hm.		
	Introduction to FIR and IIR systems : Structures for realized	zation of		
п	discrete time systems - structures for FIR and IIR systems	– signal	7	15%
	flow graphs, direct-form, cascade-form, parallel form, lat	tice and	'	1.5 /0
	transposed structures and linear Phase FIR filters.			
	FIRST INTERNAL EXAMINATION			
III	Design of digital filters – general considerations – causality	y and its	7	15%

	implications, characteristics of practical frequency selective filters IIR filter design : Discrete time IIR filter (Butterworth and Chebyshev) from analog filter – IIR filter (LPF, HPF, BPF, BRF) design by Impulse Invariance, Bilinear transfor mation, Approximation of derivatives. filter design			
IV	FIR filter design : Structures of FIR filter- Linear phase FIR filter – Filter design using windowing techniques, frequency sampling techniques	7	15%	
	SECOND INTERNAL EXAMINATION			
V	Finite word length effects in digital Filters : Fixed point and floating point number representations - Comparison - Truncation and Rounding errors - Quantization noise - derivation for quantization noise power - coefficient quantization error - Product quantization error - Overflow error – Round-off noise power - limit cycle oscillations due to product round-off and overflow errors - signal scaling Introduction to FDA Toolbox in MATLAB: Design of filters using FDA toolbox (Demo/Assignment only)	7	20%	
VI	Introduction to TMS320 Family: Architecture, Implementation, C24x CPU Internal Bus Structure, Memory Central Processing unit, Memory and I/O Spaces, Overview of Memory and I/O Spaces, Program control Address Modes System Configuration and Interrupts clocks and low Power Modes Digital input / output (I/O), Assembly language Instruction, Instruction Set summary, Instruction Description, Accumulator, arithmetic and logic Instruction, Auxiliary Register and data page Pointer Instructions, TREG, PREG, and Multiply Instruction, Branch Instructions, Control Instructions I/O and Memory Instruction Design & Implementation and Filter Structures: MATLAB functions and TMS320 Implementation (Demo/Assignment only) Introduction to Code Composer Studio (Demo only)	7	20%	
	END SEMESTER EXAM			

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course code	Course Name	L-T-P - Credits	Yea Introd	ar of luction
EE409	Electrical Machine Design	3-0-0-3	20	16
Prerequis	ite: EE202 & EE205			
Course O	bjectives			
	• To impart knowledge on principles of design of static a	nd rotatin	g electrica	1
	machines.			
	• To give a basic idea about computer aided design (CAI method.	D) and fini	te element	t
Syllabus Machine design, De aided desi	Syllabus Machine design basic principles, Heating and cooling of electrical machines, Magnetic circuit design, Design of - Dc machine, Synchronous machine , Three phase induction motor, Computer aided design, Finite element method.			
Expected	outcome			
• Th	e students will be able to design transformers, DC machines	, synchror	ous mach	ines and
inc	luction motors			
Text Bool	S: K Sayahaay " A Course in Electrical Machine Design" Dha	mm at usi	Jaana D	alla:
I. A.	K Sawnney, A Course in Electrical Machine Design, Dha	inpat rai <i>ai</i>	<i>ia</i> sons, D	eini.
2. K. 3. Ra 4. M.	M. Agarwal, Principles of Electrical Machine Design, F mamoorthy M, "Computer Aided Design of Electrical Equi N. O. Sadiku, "Numerical techniques in Electromagnetics Course Plan	pment", I ", CRC P	East-West ress Editic	S, Defini. Press. on-2001.
Module	Contents		Hours	Exam Marks
Ι	Principles of electrical machine design - General considerations - specifications of machines - types of encl types of ventilation - heating - short time rating - overload - temperature rise time curve - hot spot rating. Magnetic circuit calculation - calculation of field ampere to gap mmf - effect of slot and ventilating duct - active iron mmf for teeth - real and apparent flux densities - mmf per p Magnetic Leakage Calculation- Effects of Leakage. A Leakage –Components. Unbalanced Magnetic Pull-J aspects of unbalanced magnetic pull	design losures - capacity urns - air length - pole Armature Practical	8	15%
п	Design of transformers - single phase and three phase trans - distribution and power transformers - output equation design - window area - window space factor - overall dim of core. Windings – no. of turns - current density - co section - Cooling of transformers	sformers n - core nensions onductor	6	15%
	FIRST INTERNAL EXAMINATION			
III	Design of DC machines - output equation - specific lo choice of speed and no of poles - calculation of main dime choice of type of winding - number of slots - number of co per slot-current density - conductor section - slot insu	oading - ensions - nductors ilation -	8	15%

	END SEMESTER EXAM		
VI	Introduction to computer aided design. Analysis and synthesis methods -hybrid techniques. Introduction to Finite element method - historical background, applications, advantages. Study of new computer aided machine software using Finite Element Case study: Complete design of an ac machine –steps.(Assignment only)	7	20%
V	Design of three phase induction motors - main dimensions - stator design - squirrel cage and slip ring types - number of stator and rotor slots - rotor bar current - design of rotor bar - end ring current - design of end ring - design of slip ring rotor winding.	7	20%
	SECOND INTERNAL EXAMINATION		
IV	Design of synchronous machines - specific loading - output equation - main dimensions - types of winding - number of turns - number of slots and slot design - field design for water wheel and turbo alternators - cooling of alternators.	6	15%
	 length of air gap - design of field winding - conductor cross section height of pole - design of inter pole - flux density under inter pole calculation of turns of inter polar winding – design of compensating winding – brushes and commutators. 		

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules 1 & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course code.	Course Name	L-T-P - Credits	Year of Introduction			
EE431Power Systems Lab0-0-3-1			2016			
Prerequisite : EE306 Power System Analysis						
Course Object	etives					
 Impart 	practical knowledge about various power system equip	ment				
• Get a k setting	knowledge about the operation of power systems and the s, fault calculations etc.	e philosophy	behind the relay			
• Simula	te the power system operations which will be helpful ir	the design	of power			
system	s l'ennolour	L	1			
List of Exer	cises/Experiments: (At least 12 experiments out of	of 18 exper	iments listed are			
mandatory)						
1 Visit	a local Substation					
Aim:	To see firsthand apparatus that will be studied in this co	ourse and lea	rn about their			
	role in operation and protection of power systems.					
2. Intro	duction to PSCAD/MATLAB/MIPOWER					
Aim:). Learn the usage of PSCAD/MATLAB/MIPOWER in	n modeling o	of ac circuits and			
	plotting of results.	8				
	2). Understanding reactive power and power factor in si circuits.	ngle-phase	and three-phase			
3. Trans	mission Line and Modeling.					
Aim	Obtaining the parameters of a 345 kV transmission line PSCAD/MATLAB/MIPOWER	e and model	ing it in			
4. Power	Flow					
Aim: 7	Fo carry out power flow calculations.					
5. Trans	formers in Power Flow.					
Aim: 7	Fo look at the influence of including a tap-changer and a	<mark>a phase-s</mark> hift	er on power			
f	low and bus voltages.					
6. Includ	ling an HVDC Transmission Line for Power Flow.					
Aim: 1	1). To include an HVDC transmission line and see its ef	fect on powe	er transfer on			
	other transmission line.					
	2). To understand the operating principle of 12-pulse th	yristor conv	erters used in			
	HVDC transmission systems.					
7. Powe	r Quality.					
Aim: '	To obtain the cur <mark>rent harmonics</mark> drawn by power electro	onics interfa	ce.			
8. Synch	ronous Generators.					
Aim:	To obtain the effect of sudden short-circuit on a synchro	onous genera	ator output.			
9. Volta	ge Regulation.					
Aim:	1). To study the effect of real and reactive powers on bu	s voltages.				

2). Understanding the operation of a Thyristor Controlled Reactor (TCR).

10. Transient Stability.

Aim: To simulate transient stability in a 3-bus example power system.

10. A. Making a Power System Reliable.

Aim: 1). To understand the planning/design process that goes into making a power system reliable.

11. AGC and Economic Dispatch.

Aim: Study the dynamic interaction between two control areas using *Simulink* modeling and economic dispatch.

12. Short Circuit Faults and Overloading of Transmission Lines.

Aim: To study the effect of short-circuit faults and overloading of transmission lines.

12.A. Fault Analysis with Relay Settings.

Aim : To study a power system with faults and determine relay settings based on calculated fault currents

13. Switching Over-Voltages and Modeling of Surge Arresters.

Aim. : To study over-voltages resulting from switching of transmission lines and limiting them by sing ZnO arresters

14. Power Factor improvement:

Aim : To calculate rating of capacitors for power factor correction for a load and verifying it experimentally.

15. Solar Power Calculations :

Aim : To calculate the rating of solar panel required for a given area on rooftop or for a given load

16. Demonstration of Ferranti Effect on a transmission line

- **17. Methods of Insulation Testing**
- 18. Modern Energy Meter calibration schemes

Expected outcome.

• Students will be able to design, setup and analyse various power systems and its simulations.

Text Book:

Ned Mohan, First Course in Power Systems, Wiley.

Course co	de Course Name	L-T-P -Credits	Ye	ear of
EE461	Modern Operating Systems	3-0-0-3	2	016
Prerequis	ite : Nil			
Course O	bjectives			
	• To impart the knowledge on the need	and requirement of an inter	face betw	een Man
	and Machine.			
	• To teach the features of operating sys	stems and the fundamental th	neory asso	ciated
	with process, memory and file manage	gement components of operation	ting syste	ms.
	TECLINIO	OCICAI	8	
Syllabus		()()()()		
Operating	System Structure, Operating system	n services, Process mana	gement,	Memory
manageme	ent, File management, Storage structure, s	ecurity issues.		·
	OTATYLI			
Expected	d outcome.			
Th :	e students will be able to			
1. ii	describe contrast and compare differing	puters	tems	
iii.	understand and analyse theory and impl	ementation of: processes, res	source cor	trol
	(concurrency etc.), physical and virtual r	nemory, scheduling, I/O and	files	
Text Bo	ok:			
W	illiam Stallings, Operating Systems: Intern	nals and Design Principles, 6	th Ed., P	earson
Ed	ucation			
Referen	ces:	man Education		
1. N 2 S	illerschatz Galvin & Gagne Operating	System Concepts 8 th Ed. V	Viley	
3. T	anenbaum A.S., Modern Operating System	ms. 3 rd Ed., Prentice Hall	vincy	
	Cours	se Plan		
				Sem.
Module	Contents		Hours	Exam Marks
	Introduction-Definition- Operating System	stem Structure- Operating		
т	System Operations, Process Manageme	nt- Memory Management-	7	150/
1	Storage Management- Protection ar	nd Security- Distributed	/	13%
	Systems-			
	Computing Environments- Open Sou	rce Operating Systems-		
II	Operating-System Services- User Ope	erating-System Interface-	7	15%
	System Calls- Types of System Calls- Sy	ystem Programs		
	FIRST INTERNAL I	EXAMINATION		
	Process Management- Process Concept-	Operations on Processes-		
	Threads Overview- Multithreading M	lodels- Thread Libraries-		
TTT	Threading Issues - CPU Scheduling- Ba	asic Concepts- Scheduling	C	150/
111	Criteria- Scheduling Algorithms- Three	ad Scheduling- Multiple-	0	13%
	Processor Scheduling- Process Synchron	nisation-		
	Mamour Manager C	Continuero		
TN/	Allocation Paging Segmentation V	contiguous Memory	6	15%
1 1 1	Paging	intual memory- Demand	U	1.5 /0
IV	Paging	ntuai menory- Demand	U	1.5 70

SECOND INTERNAL EXAMINATION					
V	- File Management- File-System Interface- File Concept- Access Methods - Directory and Disk Structure - File-System Mounting - File Sharing- Protection- File-System Implementation- File- System Structure- File-System Implementation- Directory Implementation- Allocation Methods Free-Space Management - Efficiency and Performance	8	20%		
VI	Mass Storage Structure- Disk Scheduling- Disk Management- RAID Structure - Stable Storage Implementation- Protection and Security- Protection- Goals of Protection- Principles of Protection- Domain of Protection- Access Matrix Implementation of Access Matrix- Access Control- Revocation of Access Rights Security- The Security Problem -Program Threats- System and Network Threats	8	20%		
	END SEMESTER EXAM				

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Estd.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course	code	Course Name	L-T-P -Credits	Year o	of tion
EE4	62	Design of Digital Control Systems	3-0-0-3	2016	uon
Preregu	isite:	Nil			
Course	Obiec	tives			
• [Fo intro	oduce the need and concept of digital control	l system.		
• [Го ітра	art knowledge about different strategies ado	pted in the design of digital co	ntrollers.	
• [Го fami	liarize with the design of different types of	digital controllers.		
Syllabu	S	ADI ADDITI	LATANA		
Basic d	igital	control system-Pulse transfer function-	Digital PID controller design	gn- comp	ensator
design u	ising fi	requency response - compensator design	n using root locus - Direct d	lesign-me	thod of
Ragazzi	ni - De	ead-beat controller design - State space a	analysis and controller desig	n.	
Expecte	ed outo	come.	OT CITE		
On succe	essful co	ompletion, the students will have the ability	r to		
i.	desi	ign digital controllers.	0111		
ii.	ana	lyse discrete time system using state space	methods.		
iii.	ana	lyse the stability of discrete time system.			
Text B	ooks:			NI 11 1 1	
	I. Ben	jamin C. Kuo, Digital Control Systems, 2/e	e, Saunders College Publishing	, Philadel	phia,
	199	2. Dhiling H.T. Nagla Digital Control Syst	ama Prontico Hell Englewoo	d Cliffa N	Iony
4	2. C. I Iers	2. Fillips, II. T. Nagie, Digital Collubi Syst	enis, Flenuce-Han, Englewoo	u Chins, P	
	3. M.	Gopal. Digital Control and State Variable N	lethods, Tata McGraw-Hill, 1	997	
4	1. Oga	ata K., Discrete-Time Control Systems, Pea	rson Education, Asia.		
Refere	nces:				
]	l. <mark>C</mark> or	nstantine H. Houpis and Gary B. Lamon	t, Digital Control Systems	Theory, H	ardware
	Sof	tware, McGraw Hill Book Compan <mark>y</mark> , 1985.			
2	2. Iser	mann R., Digital Control Systems, Fundam	entals, Deterministic Control,	V. I, 2/e,	Springer
	Ver	lag, 1989.			
	3. Lieg	gh J. R., Applied Digital Control, Rinchart	& Winston Inc., New Delhi.		
		Course	Plan		
					Sem.
Module		Contents		Hours	Exam Morks
	Basic	c digital control system- Examples - ma	athematical model-ZOH and		
Ι	FOH	- choice of sampling rate-principles of disc	retization - Mapping between	7	15%
	s-dor	nain and z-domain			
	Pulse	e transfer function- Different configurations	s for the design- Modified z-		
II	trans	form-Time responses of discrete d	ata systems-Steady state	7	15%
	perfo	ormance.			
		FIRST INTERNAL EX	AMINATION	1	1
III	Digita	I PID and Compensator Design: Design of	digital PID controller, Design	7	15%
	of lag,	lead compensators - based on frequency re	sponse method.		
IV	Digita	r Controller Design: Design based on roo	response design. Deadbeat	7	15%
1 V	contro	ller	Tesponse design- Deadoeat	,	1570
I	- 51110	SECOND INTERNAL E	XAMINATION	1	1
	State	variable model of discrete data system	ns -Various canonical form		
N 7	repres	entations-controllable, observable, diag	onal and Jordan forms-	7	200/
v	Conve	ersion from state space to transfer fund	ction -Computation of state	/	20%
	transit	ion matrix using Cayley-Hamilton theorem	and z-transform method		

VI	Controllability, Observability, stabilizability and reachability - Loss of controllability and observability due to sampling.Pole placement design using state feedback for SISO systems.	7	20%
	Digital state feedback controller design: Complete state and output		

QUESTION PAPER PATTERN:

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

Maximum Marks: 100

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

-510

2014

Course co	ode Course Name	L-T-P - Credits	Y	ear of
EE463	Computer Aided Power Systems Analysis	3-0-0-3	Intr	2016
Prerequis	ite: FF306 Power system analysis	0000		
Course O	hier EL5001 Ower system anarysis			
Course O	introduce computer applications in the analysis of power system			
• 10 • To	understand the solution methods and techniques used in power s	is	idiae	
• 10	understand the solution methods and techniques used in power s	system su	lules	
Syllaburg	ADI ADDITI VAL	AK	1	
Davalopm	ant of nativork matrices from Granh theory Formulation of R	us Impo	lanca	matricas
Load Flor	w Analysis Optimal Power Flow Network fault calculations (Tontinger		manices-
Dower sys	tems	Johninger	icy ai	larysis III
Fynoetod		11	-	
	outcome.	aathada u	and in	nouver
	tem studies	liethous u	iseu m	power
Sys Toxt Boo				
$1 \Delta r$	ns. thur R. Bergen, Vijay Vittal, Power Systems Analysis (English)	nd Editi	n Pe	arson
	igher Education		JII, I C	ai 5011
2 GI	Kusic Computer Aided Power System Analysis PHI 1989			
3 Iol	in I Grainger William D Stevenson Ir Power System Analysis	s Tata M	cGrav	v-Hill
Sister	eries in Electrical and Computer Engineering	5, Iutu 11	corav	11111
4. M.	A. Pai, Computer Techniques in Power Systems Analysis, Tata l	McGraw-	Hill, S	Second
e	lition 2005		, .	
Reference	es:	6		
1. I.J.	Nagrath and D.P.Kothari, "Modern Power System Analysis", Ta	ta McGra	w Hil	1. 1980
2. J. I	Arriliga and N.R. Watson, Computer modelling of Electrical pow	er systen	ns, 2/e	, John
Wi	ley, 2001	5	,	,
3. LP	Singh, "Advanced Power System Analysis and Dynamics", 3/e.	New Ag	e Intl.	1996.
4. Sta	gg and El Abiad, "Computer methods in Power system Analysis	", McGra	w Hil	l,1968.
	Course Plan	1		·
Module	Contents	H	ours	Sem.
				Exam
				Marks
Ι	Overview of Graph theory -tree, co-tree and incidence ma	atrix,		
	Development of network matrices from Graph theoretic approact	h.	7	150/
	Review of solution of Linear System of equations by Gauss Jo	rdan	/	15%
	method, Gauss elimination, LDU factorization.			
II	Bus Reference Frame: Injections and Loads. Zbus and Y b	ous.		
	Formulation of Bus Impedance matrix for elements with	out	7	15%
	Mutual Coupling.			
	FIRST INTERNAL EXAMINATION			
III	Inversion of YBUS for large systems using LDU factors, Tini	ney's		
	Optimal ordering.			
	Review of Gauss-Seidel Iteration using YBUS, Newton-Raphso	n	6	15%
	method, Fast Decoupled Load Flow (FDLF)			
	DC load flow, Three-phase Load Flow.			
IV	Adjustment of network operating conditions, Optimal power f	low:		
	concepts, active/reactive power objectives (Economic dispatch,	MW	8	15%
	and MVAr loss minimization) – applications- security constra	ined	0	1.5 /0
	optimal power flow.			
SECOND INTERNAL EXAMINATION				

V	Network fault calculations using ZBUS and YBUS Table of Factors, Algorithm for calculating system conditions after fault – three phase short circuit, three phase to ground, double line to ground, line to line and single line to ground fault.	7	20%
VI	Contingency analysis in Power systems : Contingency Calculations using ZBUS and YBUS Table of Factors. State estimation – least square and weighted least square estimation methods for linear systems.	7	20%

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI. Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course co	de Course Name	L-T-P - Credits	Int	Year of
EE464	Flexible AC Transmission Systems	3-0-0-3		2016
Prereguis	ite: Nil			_010
Course O	pjectives			
	• To introduce various Power Electronics con	ntrollers used in the P	ower Sy	stems for
	the fast real and reactive power control.			
Syllabus Power flow shunt and compensat Converter control. U	v control - Benefits of FACTS -Transmission l series compensation .Reactive power con ors - Static Voltage and Phase Angle Reg type shunt and series Compensators - prir Inified Power Flow Controller	ine compensation. Un mpensation . Static gulators (TCVR &T nciple of operation,	comper shunt CPAR) configu	nsated line - and series Switching tration and
Expected	outcome.	111		
The studer	its will be able to:			
• Ur rea	derstand various power electronics based FAC	CTS devices for the co	ontrol of	f active and
• Ur	derstand the control schemes of various FACT	S devices.		
1. Fin 2. J A T J 3. K I Inte 4. Ne 5. Y.I	 Hingorani and L Gyugyi, "Understanding FACTS", IEEE Press, 2000 J Arriliga and N R Watson, "Computer modeling of Electrical Power Systems", Wiley, 2001 T J E Miller, "Reactive Power Control in Power Systems", John Wiley, 1982 K R Padiyar, "FACTS Controllers in Power Transmission and Distribution", New Age International Publishers, 2007 Ned Mohan et. al "Power Electronics", John Wiley and Sons. Y.H. Song and A.T. Johns, "Flexible ac Transmission Systems (FACTS)", IEE Press, 1999 			
	Course Pla	n	1	G
Module	Contents	I	Iours	Sem. Exam Marks
I	Power flow in Power Systems – Steady-st problems in AC systems – Voltage regulat power flow control in Power Systems – co power unbalances in Power System Power flow control -Constraints of maximu line loading - Benefits of FACTS - Tr compensation: Compensation by a series cap at the midpoint of the line, Shunt Compensati the midpoint of the line -Phase angle control Reactive power compensation – shunt and ser	ate and dynamic tion and reactive ntrol of dynamic um transmission ansmission line acitor connected ion connected at ties compensation	7	15%
Π	principles – reactive compensation at the distribution level – Static versus passive VAr (ransmission and Compensators	6	15%
	FIRST INTERNAL EXAM	IINATION		
III	Static shunt Compensator - Object compensations, Methods of controllable V	tives of shunt AR generation -		15%

	Variable impedance type VAR Generators -TCR , TSR, TSC, FC-TCR Principle of operation, configuration and control Static Series compensator - Objectives of series compensations, Variable impedance type series compensators - TCSC - Principle of operation, configuration and control.	8	
IV	Static Voltage and Phase Angle Regulators (TCVR & TCPAR): Objectives of Voltage and Phase angle regulators Thyristor controlled Voltage and Phase angle Regulators	7	15%
	SECOND INTERNAL EXAMINATION	And	
V	Switching converter type shunt Compensators Principle of operation, configuration and control, Comparison between SVC and STATCOM- Applications Switching converter type Series Compensators-(SSSC)- Principle of operation, configuration and control	7	20%
VI	Unified Power Flow Controller: Circuit Arrangement, Operation and control of UPFC General Equivalent Circuit for Facts Controllers (Shunt+series) Introduction to interline power flow controller.	7	20%
	END SEM <mark>E</mark> STER EXAM		

Maximum Marks: 100

Part A: 8 compulsory questions.

Exam Duration: 3Hourrs.

Estd.

One question from each module of Modules I - IV; and two each from Module V & VI. Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course co	ode	Course Name	L-T-P - Credits	Int	Year of roduction
EE465	;	Power Quality	3-0-0-3 201		2016
Duonocuio	:404 NI:1				
Course O	hiectives:				
• To	discuss various	power quality issues and different methods	to control t	hem.	
Syllabus:					
Power qua	ality issues in d	istribution systems, Need for power qualit	y monitori	ng, IE	EE guides,
standards	and recommen	ded practices, Modelling of networks a	nd compo	nents	under non
sinusoidal	conditions, Har	monic Analysis, Effects of Power System h	armonics	on Poy	wer System
Electromo	t and loads, H	larmonic elimination, Power Quality Ma	inagement	in S	mart Grid,
Electroma	Qutcome:	NHVED CITY	C		
• Th	e students will	be able to identify the power quality pro-	blems ca	uses a	nd suggest
sui	table mitigating	techniques.	, orenno, eu	ubeb u	ing suggest
Reference	es:	•			
1. An	igelo Baggini (E	d.) Handbook of Power Quality, Wiley, 2008	3		
2. C.	Sankaran, 'Powe	er Quality', CRC Press, 2002	1001		
3. G.	T. Heydt, <i>Powe</i>	r Quality', Stars in circle publication, Indian	a, 1991 Wilson 100'	-	
4. JOS	se Arillaga, Nevi	Independence of the provide the problems of the problem of th	wiley, 199	/ Pross 1	000
6 R	C Durgan M	F Me Granaghen H W Beaty 'Electric	cal Power	Syster	m Quality'
Mc	Graw-Hill	1. We Grundgren, H. W. Deuty, Dieerik	at 10wer	Syster	n Quanty ,
		C <mark>o</mark> urse Plan			
Module		Contents	Но	ours	Sem. Exam Marks
	Power quality	phenomenon - Sources and Effects of p	ower	6	
	quality problem	ns, types of power quality disturbances - Vo	ltage		
I	sag (or dip), Sy	vell, Transients, short duration voltage varia	tion,		
	distortion and	voltage flicker	Iorm		150/
	IEEE guide	ines standards and recommended pract	ices	7	1370
	Harmonics -n	nechanism of harmonic generation-harm	ionic		
п	indices (THD,	TIF, DIN, C – message weights - Power Qu	ality		
11	Costs Evaluati	on Harmonic sources – Switching dev	rices,		
	arcing devices	, saturable devices. Effects of Power Sy	stem		
	harmonics on F	Power System equipment and loads.			15%
	TT	FIRST INTERNAL EXAMINATION		5	150/
	transforms dia	systs - Fourier series and coefficients, the Fo	urier	3	15%
III	Window functi	on- numerical problems	onn,		
		in numerical problems.			
	Power qualit	y Monitoring considerations: Power	line	7	15%
IN /	disturbance an	alyzer, power quality measurement equipr	nent,		
11	harmonic spe	ctrum analyzer, flicker meters, disturb	ance		
	analyzer				
		SECOND INTERNAL EXAMINATION	I		

V	Harmonic elimination - Design and analysis of filters to reduce harmonic distortion – Power conditioners ,passive filter, active filter - shunt , series, hybrid filters,	7	20%
VI	Power Quality Management in Smart Grid: Power Quality in Smart Grid, Power Quality issues of Grid connected Renewable Energy Sources, Power Quality Conditioners for Smart Grid. Electromagnetic Interference (EMI -introduction - Frequency Classification - Electrical fields-Magnetic Fields - EMI Terminology - Power frequency fields - High frequency	10	20%

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Estd

Course co	de Course Name	L-T-P - Credits	Year of
EE466	Digital Image Processing	3-0-0-3	2016
Prerequis	ite: Nil		<u> </u>
Course O	bjectives		
• 1	o study the image fundamentals and mathematical transforms	necessary f	or image
pro	ocessing.	-	-
• T	o impart the image enhancement, image restoration and image	compressi	on procedures
• 1	o know about morphological image processing.	NA.	
• 1	o study the image segmentation and representation techniques.	VIVI.	
Syllabus	TECHNOLOGIC	A.L	
Elements	of visual perception, Basic geometric transformations, Sepa	rable Imag	ge Transforms,
Spatial D	omain methods, Frequency domain filters, Model of Imag	e Degradat	ion/restoration
process, C	ompression Techniques, Morphological Processing, Segment	ation, Rep	resentation and
Descriptio	n		
E	Outcomer		
The stud	Toucomes.		
i ne studi	Demonstrate understanding of the basic concepts of two-dime	nsional sig	mal
1.	acquisition sampling and quantization	lisional sig	,1141
ii	Demonstrate understanding of spatial filtering techniques inc	luding line	ar and
	nonlinear methods.		
iii.	Demonstrate understanding of 2D Fourier transform concepts	, including	the 2D DFT
	and FFT, and their use in frequency domain filtering.	, U	
iv.	Apply programming skills in digital image processing related	l problems	
Text Bo	ok:		
Rafael C	C. Gonzalez, Richard E. Woods, Digital Image Processing, Pear	son Educa	tion
Referen	ces:		
1. K.	Jain, Fundamentals of Digital Image Processing, PHI		
2. Ch	anda Dutta Magundar, Digital Image Processing and Applicati	ons, PHI	
3. Mi	lanSonka, Vaclav Hlavac, Roger Boyle, Image Processing, An	alysis and	Machine
Vi	sion, CL Engineering, 2007		
4. W	Iliam K. Pratt, Digital Image Processing, John Wiley & Sons	_	
	Course Plan		Som
Module	Contents	Но	ırs Exam Marks
	Elements of visual perception – Image sampling and quantiza	tion	
	Basic relationship between pixels – Basic geom	etric	
т	transformations-Introduction to Fourier Transform and DF	T –	150/
I	Properties of 2D Fourier Transform - FFT - Separable In	nage 7	13%
	Transforms -Walsh -Hadamard - Discrete Cosine Transform	orm,	
	Haar transforms		
	Spatial Domain methods: Basic grey level transformation	n –	
	Histogram equalization -Image subtraction - Image avera	ging	
II	Spatial filtering: Smoothing, sharpening filters – Laplacian fi	Iters 7	15%
	Frequency domain filters : Smoothing – Sharpening filte	rs –	
	Homomorphic filtering.		
	ΓΙΣΟΥΤ ΙΝΥΤΕΊΝΙΑΤ ΤΑΥ ΑΒΑΤΝΙΑΤΙΥΛΝΙ		
	FIKST INTERNAL EXAMINATION		

III	Model of Image Degradation/restoration process – Noise models – Inverse filtering –Least mean square filtering – Constrained least mean square filtering – Blind image restoration – Pseudo inverse – Singular value decomposition	7	15%
IV	Lossless compression: Variable length coding – LZW coding – Bit plane coding, predictive coding-DPCM. Lossy Compression: Transform coding – Wavelet coding – Basics of Image compression standards: JPEG, MPEG	7	15%
SECOND INTERNAL EXAMINATION			
v	MorphologicalImageProcessing-Dilation,Erosion,Morphological Reconstruction-Gray Scale MorphologyEdge detection – Thresholding - Region Based segmentation	7	20%
VI	Boundary representation: chair codes- Polygonal approximation –Boundary segments – boundary descriptors: Simple descriptors Fourier descriptors - Regional descriptors – Simple descriptors	7	20%
	rouner descriptors regionar descriptors binipie descriptors		

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Estd.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course co	de Course Name	L-T-P -Credits	Year Introdu	of ction
EE467	Nonlinear Control Systems	3-0-0-3 2016		
Prerequis	ite: Nil			
Course O	bjectives:			
• To	introduce the need and concept of nonlinear s	ystem.		
• To	impart knowledge about different strategies ad	dopted in the analysis o	f nonlinea	r
sys	stems.	$K \Delta I \Delta N$		
• To	familiarize with the design of different types of	of nonlinear controllers.	L	
Syllabus:		CICA.		
Character	stics of nonlinear systems- equilibrium poi	nts-phase plane analys	sis-periodi	c orbits-
stability (of nonlinear systems-Lyapunov stability-va	riable gradient metho	d-centre	manifold
theorem-c	autoome	Tzation-Exact Feedback	Innearizat	1011.
The stude	outcome ats will be able to			
i des	sign controllers for nonlinear systems			
ii an	alves the stability of nonlinear systems using y	arious approaches		
Text Bo	oks:			
1. A	lberto Isidori, "Nonlinear Control Systems: An	n Introduction", Springe	er-Verlag,	1985
2. H	assan K Khalil, Nonlinear Systems, Prentice -	Hall International (UK), 2002.	
3. Je	ean-Jacques E. Slotine and Weiping Li, "Appli	ed Nonlinear Control",	Prentice-I	Hall, NJ,
1	991.			
Reference	ces:			
1. N	I. Vidyasagar, "Nonlinear Systems Analysis", I	Prentice-Hall, India, 19	91,	
2. S	hankar Sastry, "Nonlinear System Analysis, St	ability and Control", Sp	oringer, 19	99.
	Course Pla	an		Som
Module	Contents	\cup	Hours	Exam Marks
	Introduction - Characteristics of nonlinear sy	stems - Classification		
Т	of equilibrium points- analysis of systems w	ith piecewise constant	7	15%
I	inputs using phase plane analysis.		7	1370
	Periodic orbits - limit cycles-Poincare-E	Bendixson criterion-		
II	Bendixson criterion. Existence and uniqu	ieness of solutions,	7	15%
	Lipschitz condition.			
	FIRST INTERNAL EAA	WIINA IION		
	local linearization and stability in the sm	all Direct method of		
Ш	- local integrization and stability in the sin	all- Direct linear and	7	15%
111	nonlinear systems – variable gradient method	l los inicas and	7	1370
	nommear systems variable gradient method			
	Centre manifold theorem - region of attraction	on - Feedback Control		
TT 7	and Feedback Stabilisation-Analysis of feed	lback systems- Circle	~	150/
IV	Criterion – Popov Criterion.		/	15%
	-			
	SECOND INTERNAL EX	AMINATION		

V	Feedback linearization- Design via linearization- stabilization - regulation via integral control- gain scheduling.	7	20%
VI	Exact Feedback Linearization - Input state linearization - input output linearization - state feedback control - stabilization - tracking - integral control.	7	20%

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Estd.

Course co	de Course Name	L-T-P -Credits	Year of Introduction
EE468	Computer Networks	3-0-0-3	2016
Prerequis	ite: Nil		
Course O	bjectives		
	• To impart the mode of operation of o	different types of comput	er networks that are
	used to interconnect a distributed con	nmunity of computers and	l various interfacing
	standards and protocols	VATAA	A
	ALADUUL	NALAN	
Syllabus Introductio MAC prot	on on Computer Networks, Network Har ocols, Network layer, Transport layer, App	dware, Protocol architec	ture, functionalities,
Expected	l Outcome.	0111	
The stude	ents will be able to:		
i.	Analyze the requirements for a given of	organizational structure a	and select the most
	appropriate networking architecture and to	echnologies.	
11.	Specify and identify deficiencies in existi	ng protocols, and then go	onto formulate new
• • •	and better protocols.		the fam of D have 1
111.	Analyze, specify and design the topolog	gical and routing strateg	les for an IP based
Text Roc	hetworking initastructure.		
 Jim k Pears Larry More 	Surose and Keith Ross, ``Computer Networ on Education, 2012 L. Peterson and Bruce S. Davie, ``Compu an Kaufmann, 5/e, 2011	rking: A Top-Down Appr 1ter Networks: A Systems	oach," 5th Edition, Approach,"
Reference	es:		
1. An 2 Fo	drew S, Computer Networks by Tanenbau	m, Prentice Hall of India,	New Delhi
2. 10 3. Ne	il Jenkins, Understanding Local area Netw	ork, SAMS Publishers	
4. Pet	er Hud <mark>son, Local area Netw</mark> orks by, Thom	nson Learning	
	Course	e Plan	
Module	Contents	Hours	Sem.ExamMarks
Ι	Introduction-Uses of Computer Network Hardware, Network Software, Reference	orks, Network ence Models, 6	
	Example Networks, 7012	12. 1	15%
	Network Standardization. The Med	ium Access	
TT	Control Sublayer- The Channel Allocat	ion Problem,	
11	Multiple Access Protocols, Ethernet, Wi	ireless LANs, /	
	Broadband wireless, Bluetooth.		15%
	FIRST INTERNAL E	XAMINATION	1570
	The Network Layer- Network Layer 1	Design Issues,	15%
III	Routing Algorithms, Congestion Contro Quality of Service, Internetworking, Layer in the Internet	ol Algorithms, 7 The Network	

137	The Transport Layer- The Transport Service, Elements	7	15%
1 V	of Transport Protocols, A Simple Transport Protocol,		
	SECOND INTERNAL EXAMINATIO	N	
V	The Internet Transport Protocols: UDP, The Internet	7	20%
	Transport Protocols: TCP, Performance Issues.		
	The Application Layer- DNS-The Domain Name	8	20%
VI	System, Electronic Mail, The World Wide Web,		
	Multimedia		

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course co	de Course Name	Course NameL-T-P -CreditsYear of Introduction			
EE469	Electric and Hybrid Vehicles	3-0-0-3	20	16	
Prerequis	te : Nil				
Course O	ojectives				
• To	present a comprehensive overview of Electric ar	nd Hybrid Electric Vehicle	es		
Syllabus					
Introduction	to Hybrid Electric Vehicles, Conventional V	/ehicles, Hybrid Electric	Drive-train	ns, Electric	
Propulsion unit, Configuration and control of DC Motor drives, Induction Motor drives, Permanent Magnet					
Motor drive	es, switched reluctance motor, Energy Storage	Requirements in Hybrid	and Electric	c Vehicles,	
Sizing the c	rive system, Design of a Hybrid Electric Vehicle	e, Energy Management S	trategies.		
Fynoetod	outcomo	AILA			
The studer	ts will be able to	CITY			
i.	Choose a suitable drive scheme for develor	oing an electric hybrid v	ehicle dep	ending on	
	resources	5	-	U	
ii.	Design and develop basic schemes of electr	ic vehicles and hybrid e	lectric veh	icles.	
iii.	Choose proper energy storage systems for v	vehicle applications	1 * 1	· 1	
1V.	Identify various communication protocols a	ind technologies used in	venicle ne	etworks.	
1 EXT BOOK	: I Hussoin, Electric and Hybrid Vahieles: Desig	n Fundamentala CPC Pro	aa 2003		
L. 190	as Husseni, Electric and Hydrid Venicles. Desig	ii Fundamentais, CKC FIC	88, 2003		
1. Jan	es Larminie, John Lowry, Electric Vehicle Tech	mology Explained Wiley	2003		
2. Me	hrdad Ehsani, YimiGao, Sebastian E. Gay, Ali E	Emadi, Modern Electric, H	ybrid Elect	ric and	
Fue	el Cell Vehicles: Fundamentals, Theory and Des	ign, CRC Press, 2004.	5		
	Course l	Plan			
Module	Contents		Hours	Sem. Exam Marks	
Ι	Introduction to Hybrid Electric Vehicles: Hist vehicles, social and environmental importance vehicles, impact of modern drive-trains on ener Conventional Vehicles: Basics of vehicle per source characterization, transmission chara models to describe vehicle performance.	ory of hybrid and electric ce of hybrid and electric gy supplies. formance, vehicle power acteristics, mathematica	7	15%	
II	Hybrid Electric Drive-trains: Basic conce introduction to various hybrid drive-train topol in hybrid drive-train topologies, fuel efficiency Electric Drive-trains: Basic concept of electric various electric drive-train topologies, power drive-train topologies, fuel efficiency analysis.	ept of hybrid traction logies, power flow contro analysis. c traction, introduction to flow control in electric	, 1 7	15%	
FIRST INTERNAL EXAMINATION					
III	Electric Propulsion unit: Introduction to electhybrid and electric vehicles, Configuration a drives, Configuration and control of Induction I	ctric components used ir nd control of DC Motor Motor drives	7	15%	
IV	Energy Storage: Introduction to Energy Storag and Electric Vehicles, Battery based energy sto Cell based energy storage and its analysis, I energy storage devices.	e Requirements in Hybrid rage and its analysis, Fue Hybridization of differen	t 7	15%	
	SECOND INTERNAL EX	XAMINATION			
V	Sizing the drive system: Matching the electric combustion engine (ICE), Sizing the propulsio	machine and the interna n motor, sizing the power	l 7	20%	

	electronics, selecting the energy storage technology,		
VI	Communications, supporting subsystems: In vehicle networks- CAN, Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies	7	20%

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course co	de	Course Name	L-T-P - Credits	Y Intr	ear of		
EE472		Internet of Things	3-0-0-3 2016				
Prerequis	ite: Nil	8					
Course O	bjectives						
•	To introc	luce IoT and impart its Vision					
•	To under	stand IoT Market perspective.					
•	To know	data and knowledge Management and use of dev	ices in IoT	Techno	logy.		
•	To under	stand State of the Art – IoT Architecture.	$\Delta \Lambda \Lambda$		0.		
•	To unde	erstand real world IoT Design Constraints,	Industrial	Autom	ation and		
	Commer	cial Building Automation in IoT.	AI				
Syllabus	1.1	.CHINOLOUI	AL				
Internet in	n general	and Internet of Things, IoT Technology Fun	ndamentals	, Comr	nunication		
Technolog	y for Io	oT, Data Management, Sensors and security of	of IoT, Sta	andardis	ation and		
Protocol,	oT archite	ectures, Embedded design for IoT, Case Studies and	nd smart ap	plicatio	ns		
Expected	outcome.						
The stude	nts will be	able to					
i.	Explain i	in a concise manner how the general Internet as w	ell as Interi	net of T	nings		
	work.			1 0	.		
11.	Understa	ind constraints and opportunities of wireless and n	nobile netw	orks for	r Internet		
•••	of Thing	S.		. f			
111.	Use basic	c measurement tools to determine the real-time pe	riormance	от раско	et based		
1.	Analyse	5. trade offs in interconnected wireless embedded so	ngor notwo	rka			
Toyt Rod	Anaryse	trade-ons in interconnected whereas embedded se		<i>л</i> к <u>5</u> .			
1 Ac	rian McE	wen (Author) Hakim Cassimally "Designing the	Internet of	f Things	" 1st		
Fd	ition. Wile	ev. 2014	internet of	i i iiiigo	150		
2. Vi	av Madis	etti and ArshdeepBahga, "Internet of Things (A F	lands-on-				
Ar	proach)",	1 st Edition, VPT, 2014					
Referen	es:						
1. Ov	idu Verm	esan and Peter Friess (Ed) Internet of Things - Fr	om Resear	ch and I	nnovation		
to	Market De	eployment -RIVER PUBLISHERS					
2. Ov	idu Verm	esan and Peter Friess (Ed), The Internet of Thing	s : Converg	ging Teo	chnologies		
for	Smart En	vironments and Integrated Ecosystems, , River Pu	ublishers.				
3. Sa	nuel Gree	engard, The Internet of Things (The MIT Press Es	sential Kno	owledge			
sei	ies)Paperl	back – March 20, 2015		C			
		Course Plan					
		2014		-	Sem		
Module		Contents	H	lours	Exam Morks		
	Introduct	tion : Definition Internet of Things Vision Int	ernet		IVIALKS		
	of Thing	as Today. Internet of Things Tomorrow Pote	ential				
Ι	Success	Factors of Internet of Things IoT Application A	reas	6	15%		
	IoT Fund	ctional View	,				
	IoT Tech	hnology Fundamentals : Internet of Things La	vered				
	Architect	ture, IoT Related future Internet Technologies:	Cloud				
II	computir	ng, IoT and Semantic Technologies; Netwo	orking	8	15%		
	Technolo	bgy, Communication Technology : Device	s and				
	gateways	s, Local and wide area networking, WIRELESS	AND				

	IoT : Overview , Broadcast, Sensor Networks, Wi-Fi , Bluetooth ,Other Low Power Radios		
	FIRST INTERNAL EXAMINATION		-
III	Data management ,DCA, Big Data , Semantic Sensor Networks and Semantic Annotation of Data ,Virtual Sensors ; Security , Privacy and Trust for Internet of Things :Security for Internet of Things ,Privacy for Internet of Things , Trust for Internet of Things ;	8	15%
IV	IoT related Standardisation : Role of Standardisation , Current Situation , Interoperability of IoT , Standards considerations and Protocols , IoT Protocols Convergence : MQTT ,CoAP , AMQP, DDS , API , REST , XMPP IoT Architectural Overview : Building an IoT architecture, Main design principles and needed capabilities, IoT Architecture Outline ;	8	15%
	SECOND INTERNAL EXAMINATION		
V	Embedded Design for IoT : CPU, I/O devices, clock, memory, address and data buses, Tristate Logic ,Embedded System Definition & Real time applications ,CISC vs. RISC, OS vs. RTOS, Application Software vs. Embedded Software (Drivers & BSPs)	8	20%
VI	Case Study & Advanced IoT Applications: Sensors and sensor Node and interfacing using any Embedded target boards (Raspberry Pi / ARM Cortex/ Arduino) Internet of Things SMART Applications : Energy management, Traffic management, IoT for Home ,Cities , Smart Energy and Smart Grid , Smart Logistics and Retails	8	20%
	END SEMESTER EXAM	L	
	2014		

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course co	ode Course Name	L-T-P - Credits	Year Introdu	of				
EE474	ENERGY MANAGEMENT AND AUDI	FING 3-0-0-3	201	6				
Prerequisite : Nil								
Course Objectives								
• To enable the students to understand the concept of energy management and energy management opportunities								
• To understand the different methods used to control peak demand								
To know energy auditing procedure								
• To	 To understand the different methods used for the economic analysis of energy projects. 							
Syllabus General principles of Energy management and Energy management planning - Peak Demand controls - Energy management opportunities in electrical systems and HVAC systems – Reactive power management – Energy audit – cogeneration system – Economic analysis of energy projects								
Expected	outcome .							
• Th	e students will be able to understand the different n	nethods used to reduce	e energy					
coi	isumption							
Data Bo	ok (Approved for use in the examination):							
 References: Albert Thumann, William J. Younger, Handbook of Energy Audits, CRC Press, 2003. Charles M. Gottschalk, Industrial energy conservation, John Wiley & Sons, 1996. Craig B. Smith, Energy management principles, Pergamon Press. D. Yogi Goswami, Frank Kreith, Energy Management and Conservation Handbook, CRC Press, 2007 G.G. Rajan, Optimizing energy efficiencies in industry -, Tata McGraw Hill, Pub. Co., 2001. IEEE recommended practice for energy management in industrial and commercial facilities, IEEE std 739 - 1995 (Bronze book). M Jayaraju and Premlet, Introduction to Energy Conservation And Management, Phasor Books, 2008 Paul O'Callaghan, Energy management, McGraw Hill Book Co. Wayne C. Turner, Energy management Hand Book The Fairmount Press, Inc., 1997. 								
	Course i fait			Sem.				
Module	Contents		Hours	Exam Marilar				
I	General principles of Energy management and planning. Peak Demand controls, Methodologies, Types Optimal Load scheduling-Case studies.	Energy management of Industrial Loads,	6	15%				
II	Energy management opportunities in Lighting and Process and Electric heating, Case studies.	Motors. Electrolytic	8	15%				
FIRST INTERNAL EXAMINATION								
	Types of boilers, Combustion in boilers, Perfo	ormances evaluation,						
III	Feed water treatment, Blow down, Energy conse	rvation opportunities						
	in boiler.							

	Properties of steam, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system, Identifying opportunities for energy savings. Classification, General fuel economy measures in furnaces, Excess air, Heat Distribution, Temperature control, Draft control, Waste heat recovery.	8	15%		
IV	HVAC system: Coefficient of performance, Capacity, Factors affecting Refrigeration and Air conditioning system performance and savings opportunities. Classification and Advantages of Waste Heat Recovery system, analysis of waste heat recovery for Energy saving opportunities	7	15%		
SECOND INTERNAL EXAMINATION					
V	Energy audit -Definition, Need, Types of energy audit, Energy audit Instruments. Cogeneration-Types and Schemes, Optimal operation of cogeneration plants- Case study. Computer aided energy management.	7	20%		
VI	Economic analysis methods-cash flow model, time value of money, evaluation of proposals, pay-back method, average rate of return method, internal rate of return method, present value method, life cycle costing approach, Case studies.	6	20%		
END SEMESTER EXAM					

Estd.

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.