CURRICULUM I TO VIII: NAVAL ARCHITECTURE AND SHIP BUILDING

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

SI. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	HMC	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	OEC	3
6	Open Elective Courses	PWS	15
7	Project work and Seminar	MNC	-----
8	Mandatory Non-credit Courses (P/F) with grade	MSA	2
9	Mandatory Student Activities (P/F)	162	
	Total Mandatory Credits	VAC	20
10	Value Added Course (Optional)		2

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester-wise credit distribution shall be as below:

Sem	1	2	3	4	5	6	7	8	Total
Credits	17	21	22	22	23	23	15	17	160
Activity Points	50				50				--
Credits for Activity	2								2
G.Total									162

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc
Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.
Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance \& Accounting, Life Skills, Professional Communication, Economics etc
Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like ECL 20 1. The first two letter code refers to the department offering the course. EC stands for course in Electronics \& Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the Table 1.

Table 1: Code for the courses

Code	Description
T	Theory based courses (other the lecture hours, these courses can have tutorial and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
N	Non-credit courses
D	Project based courses (Major, Mini Projects)
Q	Seminar Courses

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2
Table 2: Departments and their codes

SL NO	Department	Course Prefix	SL NO	Department	Course Prefix
1	Aeronautical Engg	AO	20	Food Technology	FT
2	 Instrumentation	AE	21	Humanities	HU
3	Artificial Intelligence	AI	22	Industrial Engg	IE
4	Artificial Intelligence \& Data Science	AD	23	Information Technology	IT
5	Automobile	AU	24	Instrumentation \& Control	IC
6	Biomedical Engg	BM	25	Mandatory Courses	MC
7	Biotechnology	BT	26	Mathematics	MA
8	Chemical Engg	CY	27	Mechanical Engg	ME
9	Chemistry	CE	29	Metallurgy	MR
10	Civil Engg	CS	30	Mechanical (Auto)	MU
11	Computer Science	CA	31	Mechanical (Prod)	MP
12	Computer Science (Artificial Intelligence)	CM	32	Naval \& Ship Building	SB
13	Computer Science (Artificial Intelligence \& Machine Learning)	CD	CD	37	Safety \& Fire Engg

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	$\begin{aligned} & \text { CREDI } \\ & \text { T } \end{aligned}$
A	MAT 101	LINERA ALGEBRA AND CALCULUS	3-1-0	4	4
$\begin{gathered} \mathrm{B} \\ 1 / 2 \end{gathered}$	PHT 110	ENGINEERING PHYSICS B	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
$\begin{gathered} C \\ 1 / 2 \end{gathered}$	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
$\begin{gathered} \text { D } \\ 1 / 2 \end{gathered}$	EST 120	BASICS OF CIVIL \& MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL \& ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUN 101	LIFE SKILLS	2-0-2	4	--
$\begin{gathered} \hline S \\ 1 / 2 \end{gathered}$	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
$\begin{gathered} \hline \mathrm{T} \\ 1 / 2 \end{gathered}$	ESL 120	CIVIL \& MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL \& ELECTRONICS WORKSHOP	0-0-2	2	1
TOTAL				23/24 *	17

*Minimum hours per week
NOTE:
To make up for the hours lost due to induction program, one extra hour may be allotted to each course

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT 102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS	$3-1-0$	4	4
$\begin{gathered} \hline \text { B } \\ 1 / 2 \end{gathered}$	PHT 110	ENGINEERING PHYSICS B	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
$\begin{gathered} \text { C } \\ 1 / 2 \end{gathered}$	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
$\begin{gathered} \hline \mathrm{D} \\ 1 / 2 \end{gathered}$	EST 120	BASICS OF CIVIL \& MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL \& ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUN 102	PROFESSIONAL COMMUNICATION	2-0-2	4	--
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
$\begin{gathered} \mathrm{S} \\ 1 / 2 \end{gathered}$	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
$\begin{gathered} \hline \mathrm{T} \\ 1 / 2 \end{gathered}$	ESL 120	CIVIL \& MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL \& ELECTRONICS WORKSHOP	0-0-2	2	1
TOTAL				28/29	21

NOTE:

1. Engineering Physics B and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics B in SI and Engineering Chemistry in S2 \& vice versa. Students opting for Engineering Physics B in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
2. Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 \& vice versa.
3. Basics of Civil \& Mechanical Engineering and Basics of Electrical \& Electronics Engineering shall be offered in both semesters. Basics of Civil \& Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.
Basics of Electrical \& Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil \& Mechanical Engineering in one semester should attend Civil \& Mechanical Workshop in the same semester and students having Basics of Electrical \& Electronics Engineering in a semester should attend Electrical \& Electronics Workshop in the same semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency \& accuracy in speech, Positive thinking, Improving self-expression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover \& back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT201	PARTIAL DIFFERNTIAL EQUATION AND COMPLEX ANALYSIS	$3-1-0$	4	4
B	SBT 201	INTRODUCTION TO NAVAL ARCHITECTURE	$3-1-0$	4	4
C	SBT 203	MECHANICS OF SOLIDS	$3-1-0$	4	4
D	SBT 205	MECHANICS OF FLUIDS	$3-1-0$	4	4
E	EST200	DESIGN \& ENGINEERING	$2-0-0$	2	2
1/2	HUT200	PROFESSIONAL ETHICS	$2-0-0$	2	2
F	MCN201	SUSTAINABLE ENGINEERING	$2-0-0$	2	--
S	SBL 201	MECHANICS OF FLUIDS LAB	$0-0-3$	3	2
T	SBL 203	WELDING AND MACHINE TOOLS LAB	$0-0-3$	3	2
R/M	VAC	REMEDIAL/MINOR COURSE	$3-1-0$	$4 *$	4

NOTE:

1. Design \& Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design \& Engineering in S3 and Professional Ethics in S4 \& vice versa.
2. *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT202	PROBABILITY, STATISTICS AND NUMERICAL METHODS	$3-1-0$	4	4
B	SBT202	RESISTANCE AND PROPULSION OF SHIPS	$3-1-0$	4	4
C	SBT204	STABILITY OF SHIPS AND SUBMARINES	$3-1-0$	4	4
D	SBT206	ANALYSIS OF STRUCTURES	$3-1-0$	4	4
E $1 / 2$	EST200	DESIGN \& ENGINEERING	$2-0-0$	2	2
	HUT200	PROFESSIONAL ETHICS	$2-0-0$	2	2
F	MCN202	CONSTITUTION OF INDIA	$2-0-0$	2	--
S	SBL204	SHIP DESIGN LAB	$0-0-3$	3	2
MEASUREMENTS LAB	$0-0-3$	3	2		
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE T	$3-1-0$	$4 *$	4

NOTE:

1. Design \& Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design \& Engineering in S3 and Professional Ethics in S4 \& vice versa.
2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT		
A	SBT301	SHIP DYNAMICS	$3-1-0$	4	4		
B	SBT303	STRUCTURAL DESIGN OF SHIPS	$3-1-0$	4	4		
C	SBT305	STRENGTH OF SHIPS - I	$3-1-0$	4	4		
D	SBT307	ELECTRICAL TECHNOLOGY AND INSTRUMENTATION	$3-1-0$	4	4		
E 1/2	HUT300	INDUSTRIAL ECONOMICS \& FOREIGN TRADE	$3-0-0$	3	3		
	HUT310	MANAGEMENT FOR ENGINEERS	$3-0-0$	3	3		
F	MCN301	DISASTER MANAGEMENT	$2-0-0$	2	--		
S	SBL331	STRENGTH OF MATERIALS LAB	$0-0-3$	3	2		
T	SBL333	MARINE HYDRODYNAMICS AND HYDRAULIC MACHINERIES LAB	$0-0-3$	3	2		
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	$3-1-0$	$4 *$	4		
TOTAL							$\mathbf{2 3 / 2 7}$

NOTE:

1. Industrial Economics \& Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Industrial Economics \& Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	SBT302	SHIP DESIGN - I	3-1-0	4	4
B	SBT304	STRENGTH OF SHIPS - II	$3-1-0$	4	4
C	SBT306	MARINE ENGINEERING	3-1-0	4	4
D	SBTXXX	PROGRAM ELECTIVEI	2-1-0	3	3
$\begin{gathered} \mathrm{E} \\ 1 / 2 \end{gathered}$	HUT300	INDUSTRIAL ECONOMICS \& FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	SBT308	COMREHENSIVE COURSE WORK	1-0-0	1	1
S	SBL332	CAD/ CAM LAB	0-0-3	3	2
T	SBL334	ELECTRICAL ENGINEERING LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		25/29	23/27

PROGRAM ELECTIVE I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
D	SBT312	MATERIAL SCIENCE	2-1-0	3	3
	SBT322	MARINE POLLUTION, CONTROL AND RECOVERY SYSTEMS	2-1-0		
	SBT332	APPLIED THERMODYNAMICS	2-1-0		
	SBT342	INLAND WATER TRANSPORTATION	2-1-0		

NOTE:

1. Industrial Economics \& Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50\% of the number of branches in the Institution to opt for Industrial Economics \& Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing any 5 core courses studied from semester 3 to 5 . The pass minimum for this course is 25 . The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum.

Total marks: 150, CIE 75 marks and ESE 75 marks Split up for CIE
Attendance
: 10
Guide
: 15
Project Report
: 10
Evaluation by the Committee (will be evaluating the level of completion and demonstration of functionality/specifications, presentation, oral examination, work knowledge and involvement) : 40

SEMESTER VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	SBT401	SHIP DESIGN - II	$2-1-0$	3	3
B	SBTXXX	PROGRAM ELECTIVE II	$2-1-0$	3	3
C	SBTXXX	OPEN ELECTIVE	$2-1-0$	3	3
D	MCN401	INDUSTRIAL SAFETY ENGINEERING	$2-1-0$	3	---
S	SBL411	MARINE ENGINEERING LAB	$0-0-3$	3	2
T	SBQ413	SEMINAR	$0-0-3$	3	2
U	SBD415	PROJECT PHASE I	$0-0-6$	6	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE TOTAL	$3-1-0$	4^{*}	4
			$24 / 28$	$15 / 19$	

PROGRAM ELECTIVE II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
C	SBT413	SHIPBUILDING MATERIALS, CORROSION PREVENTION AND PROTECTION	2-1-0	3	3
	SB 423	SHIP RECYCLING F-5IL,	2-1-0		
	SBT433	DESIGN OF FISHING VESSELS	2-1-0		
	SBT443	SHIP PRODUCTION	2-1-0		

OPEN ELECTIVE (OE)

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. For example The courses listed below are offered by the Department of NAVAL ARCHITECTURE \& SHIP BUILDING for students of other undergraduate branches offered in the college under KTU

NAVAL ARCHITECTURE AND SHIP BUILDING

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
C	SBT 415	DREDGERS AND HARBOUR CRAFTS	2-1-0	3	3
	SBT 425	SHIPBUILDING TECHNOLOGY	2-1-0		
	SBT 435	MARINE MATERIALS AND CORROSION	2-1-0		

1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honours programme, he/she can be given remedial class.
2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.
Total marks: 100 , only CIE , minimum required to pass 50
Attendance : 10

Guide :20
Technical Content of the Report
3. Project Phase I: A Project topic must be selected either from research literature or the students themselves may propose suitable topics in consultation with their guides. The object of Project Work I is to enable the student to take up investigative study in the broad field of Naval Architecture and ship building, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on a group of three/four students, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R\&D work. The assignment to normally include:
> Survey and study of published literature on the assigned topic;

NAVAL ARCHITECTURE AND SHIP BUILDING

> Preparing an Action Plan for conducting the investigation, including team work;
> Working out a preliminary Approach to the Problem relating to the assigned topic;
> Block level design documentation
> Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility;
Preparing a Written Report on the Study conducted for presentation to the Department;
Final Seminar, as oral Presentation before the evaluation committee.
Total marks: 100, only CIE, minimum required to pass 50
Guide :30
Interim evaluation by the evaluation committee :20
Final Seminar :30
The report evaluated by the evaluation committee :20
The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	SBT402	OFFSHORE STRUCTURES	$2-1-0$	3	3
B	SBTXXX	PROGRAM ELECTIVE III	$2-1-0$	3	3
C	SBTXXX	PROGRAM ELECTIVE IV	$2-1-0$	3	3
D	SBTXXX	PROGRAM ELECTIVE V	$2-1-0$	3	3
T	SBT404	COMPREHENSIVE COURSE VIVA	$1-0-0$	1	1
U	SBD416	PROJECT PHASE II	$0-0-12$	12	4
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	$\mathbf{3 - 1 - 0}$	4^{*}	4

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
B SBT414	JOINING TECHNIQUES IN SHIPBUILDING TECHNOLOGY	$2-1-0$			
	SBT424	SHIP PRODUCTION MANAGEMENT	$2-1-0$	3	3
	SBT434	SUBMARINE AND SUBMERSIBLES	$2-1-0$		
	SBT444	ELECTRICAL SYSTEMS IN SHIPS AND SHIPYARDS	$2-1-0$		

PROGRAM ELECTIVE IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
C	SBT416	SHIP SURVEY ESTIMATION AND REPAIR	$2-1-0$		
	SBT426	REFRIGERATION AND AIR CONDITIONING OF SHIPS	$2-1-0$	3	3
	SBT436	MARITIME LAW	$2-1-0$		
	SBT446	DESIGN OF MACHINE ELEMENTS	$2-1-0$		

PROGRAM ELECTIVE V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
D	SBT418	EXPERIMENTAL TECHNIQUES ON SHIPS AND MODELS	$2-1-0$		
	SBT428	OCEAN WAVE HYDRODYNAMICS	$2-1-0$	3	3
	SBT438	COMPUTER AIDED DESIGN AND COMPUTER AIDED MANUFACTURING	$2-1-0$		
	SBT448	FINITE ELEMENT METHOD	$2-1-0$		

NOTE

1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honours programme, he/she can be given remedial class.
2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25 . The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
3. Project Phase II: The object of Project Work II \& Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R\&D laboratory/Industry. This is expected to provide a good training for the student(s) in R\&D work and technical leadership. The assignment to normally include:
> In depth study of the topic assigned in the light of the Report prepared under Phasel;
$>$ Review and finalization of the Approach to the Problem relating to the assigned topic;
> Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;
> Final development of product/process, testing, results, conclusions and future directions;
> Preparing a paper for Conference presentation/Publication in Journals, if possible;
> Preparing a Dissertation in the standard format for being evaluated by the Department;
> Final Presentation before a Committee

Total marks: 150, only CIE, minimum required to pass 75
Guide

: 30

Interim evaluation, 2 times in the semester by the evaluation committee : 50
Quality of the report evaluated by the above committee : 30
(The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor).

Final evaluation by a three member committee $: 40$
(The final evaluation committee comprises Project coordinator, expert from Industry/research Institute and a senior faculty from a sister department. The same committee will conduct comprehensive course viva for 50 marks).

MINOR

Minor is an additional credential a student may earn if $s /$ he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of $3-6$ courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot
be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.
(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by \mathbf{M} slot courses.
(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 ($162+20$ credits from value added courses)
(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum, of which one course shall be a mini project based on the chosen area. They can do miniproject on the chosen area in $\mathrm{S7}$ or S 8 . The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.
(iv) There won't be any supplementary examination for the courses chosen for Minor.
(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.
(vi) The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered for B.Tech Minor in NAVAL ARCHITECTURE \& SHIP BUILDING Branch can opt to study the courses listed below:

Basket I					
Semester	COURSE NO.	Course Name	Hours	Credit	
S3	SBT 281	FUNDAMENTAL CONCEPTS IN NAVAL ARCHITECTURE	4	4	
S4	SBT 282	STABILITY OF SHIPS	4	4	
S5	SBT 381	RESISTANCE OF SHIPS	4	4	
S6	SBT 382	PROPULSION OF SHIPS	4	4	
S7	SBD 481	MINI PROJECT -1	4	4	
S8	SBD 482	MINI PROJECT -2	4	4	

HONOURS

Honours is an additional credential a student may earn if $s /$ he opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.
(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
(ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 ($162+20$ credits from value added courses).
(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of ' C ' or better for all courses under honours.
(iv) There won't be any supplementary examination for the courses chosen for honours.
(v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than
or equal to 8.5 , earned a grade of ' C ' or better for all courses chosen for honours and without any history of ' F ' Grade.
(vi) The registration for honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in 58. Students who have registered for B.Tech Honours in NAVAL ARCHITECTURE \& SHIP BUILDING can opt to study the courses listed below:

Group I					
Semester	COURSE NO.	Course Name	Hours	Credit	
S4	SBT292	ADVANCED PROPELLER DESIGN OF SHIPS	4	4	
S5	SBT393	ADVANCED SHIP STABILITY AND DYNAMICS CALCULATIONS	4	4	
S6	SBT394	DYNAMIC ANALYSIS OF SHIP STRUCTURES	4	4	
S7	SBT495	ECONOMICS IN SHIP DESIGN	4	4	
S8	SBD496	MINI PROJECT	4	4	

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batchmates and seniors and start working as a team with them. The program is structured around the following five themes:
The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- Creativity: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- Social Awareness: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- Physical Activities \& Sports: Engage students in sports and physical activity to ensure healthy physical and mental growth.

