Course	e	Course Name	L-T-		Year of
code			Cred		Introduction
EE214		FRICAL TECHNOLOGY AND	3-0-0)-3	2016
		INSTRUMENTATION			
	isites: Nil				
	Objectives:				
	-	ng of the basic working principles of			
		ng of the basic principles of instrume	entation and its	applica	ations.
Syllabus	TIT	THOUGH	C A I		
	uston I and Chauset	riction DC Motors Speed & Tong	Deufeure	Chana	atamiatian. 2m
		eristics; DC Motors- Speed & Torqu			-
		Equation, Characteristics; Altern			-
Classifica	ners, Regulation	Efficiency; Instrumentation-	Calibration,	Errors;	Transduce
Expected	l Outcome:				
-	-	of the course, the student will be able			
		working principle, construction, type	-	e chara	cteristics an
	oplications of DC ger	nerators, DC motors and induction n			
·· • • •					1.
		c working principle, construction			
		c working principle, construction F methods to det <mark>er</mark> mine the voltage r			
re	gulation, EMF, MM		egulation of al	ternator	·s.
re iii. U	gulation, EMF, MM	F methods to det <mark>er</mark> mine the voltage r	regulation of al types, equivation	ternator alent ci	rs. ircuit, losses
iii. U ef	gulation, EMF, MM nderstand the basic ficiency, regulation	F methods to determine the voltage r c working principle, construction, and applications of transformers an	regulation of al types, equivation	ternator alent ci	rs. ircuit, losses
re iii. U ef co	gulation, EMF, MM nderstand the basic ficiency, regulation onducting OC and SC	F methods to determine the voltage r c working principle, construction, and applications of transformers an C.	egulation of al types, equiva d predetermin	ternator alent ci e their	rs. ircuit, losses efficiency b
iii. U ef iv. U	gulation, EMF, MM nderstand the basic ficiency, regulation onducting OC and SC nderstand the basic p	F methods to determine the voltage r c working principle, construction, and applications of transformers an C. principles of instrumentation, measur	egulation of al types, equiva d predetermin	ternator alent ci e their	rs. ircuit, losses efficiency b
iii. U ef cc iv. U in	gulation, EMF, MM nderstand the basic ficiency, regulation onducting OC and SC nderstand the basic p instruments and me	F methods to determine the voltage r c working principle, construction, and applications of transformers an C.	egulation of al types, equiva d predetermin	ternator alent ci e their	rs. ircuit, losses efficiency b
re iii. U ef iv. U in Text Boo	gulation, EMF, MM nderstand the basic ficiency, regulation onducting OC and SC nderstand the basic p instruments and mean oks:	F methods to determine the voltage r c working principle, construction, and applications of transformers an C. principles of instrumentation, measur asurements and its applications.	egulation of al types, equiva d predetermin	ternator alent ci e their	rs. ircuit, losses efficiency b
re iii. U: ef iv. U: in Text Boo • Dr. P	gulation, EMF, MM nderstand the basic ficiency, regulation onducting OC and SC nderstand the basic p instruments and mea oks: P. S. Bimbra; Electric	F methods to determine the voltage r c working principle, construction, and applications of transformers an C. principles of instrumentation, measur asurements and its applications.	regulation of al- types, equivand predetermin rement standard	ternator alent ci e their ds and t	rs. ircuit, losses efficiency b ypes of error
re iii. U: ef iv. U: in Text Boo • Dr. P	gulation, EMF, MM nderstand the basic ficiency, regulation onducting OC and SC nderstand the basic p instruments and mea oks: P. S. Bimbra; Electric	F methods to determine the voltage r c working principle, construction, and applications of transformers an C. principles of instrumentation, measur asurements and its applications.	regulation of al- types, equivand predetermin rement standard	ternator alent ci e their ds and t	rs. ircuit, losses efficiency by ypes of error
re iii. U: ef cc iv. U: in Text Boo • Dr. P • J. B.	gulation, EMF, MM nderstand the basic ficiency, regulation onducting OC and SC nderstand the basic p instruments and mea oks: P. S. Bimbra; Electric	F methods to determine the voltage r c working principle, construction, and applications of transformers an C. principles of instrumentation, measur asurements and its applications. cal Machinery; Khanna Publishers. principles of Electrical Machines; S.	regulation of al- types, equivand predetermin rement standard	ternator alent ci e their ds and t	rs. ircuit, losses efficiency b ypes of error
re iii. U ef cc iv. U in Text Boo • Dr. P • J. B. Referenc	gulation, EMF, MM nderstand the basic ficiency, regulation onducting OC and SC nderstand the basic p instruments and mea oks: P. S. Bimbra; Electric Gupta; Theory and p	F methods to determine the voltage r c working principle, construction, and applications of transformers an C. principles of instrumentation, measur asurements and its applications. cal Machinery; Khanna Publishers. principles of Electrical Machines; S.	regulation of all types, equiva ad predetermin rement standard K.Kataria and S	ternator alent ci e their ds and t Sons Te	rs. ircuit, losses efficiency b ypes of error ex.
re iii. U: ef cc iv. U: in Text Boo • Dr. P • J. B. Referenc • A.K.	gulation, EMF, MM nderstand the basic ficiency, regulation onducting OC and SC nderstand the basic p instruments and mean oks: P. S. Bimbra; Electric Gupta; Theory and p ce Books: Sawhney; Electrical	F methods to determine the voltage r c working principle, construction, and applications of transformers an C. principles of instrumentation, measur asurements and its applications. cal Machinery; Khanna Publishers. principles of Electrical Machines; S. and Electronic Measurements and In	regulation of all types, equivand predetermin rement standard K.Kataria and s strumentation;	ternator alent ci e their ds and t Sons Te	rs. ircuit, losses efficiency b ypes of error ex.
re iii. U ef cc iv. U in Text Boo • Dr. P • J. B. Referenc • A.K. • Alex	gulation, EMF, MM nderstand the basic ficiency, regulation onducting OC and SC nderstand the basic p instruments and mea bks: P. S. Bimbra; Electric Gupta; Theory and p ce Books: Sawhney; Electrical ander Langsdorf A. S	F methods to determine the voltage r c working principle, construction, and applications of transformers an C. principles of instrumentation, measur asurements and its applications. cal Machinery; Khanna Publishers. principles of Electrical Machines; S. and Electronic Measurements and In S.; Theory of AC Machinery; Mc-Gr	regulation of all types, equivand predetermin rement standard K.Kataria and s strumentation; aw Hill.	ternator alent ci e their ds and t Sons Te Dhanp	rs. ircuit, losses efficiency b ypes of error ex. ex.
re iii. U: ef co iv. U: in Text Boo • Dr. P • J. B. Referenc • A.K. • Alex • Jame	gulation, EMF, MMI inderstand the basic ficiency, regulation onducting OC and SC inderstand the basic p instruments and mean oks: P. S. Bimbra; Electric Gupta; Theory and p ce Books: Sawhney; Electrical ander Langsdorf A. S es.W.Dally, William	F methods to determine the voltage r c working principle, construction, and applications of transformers an C. principles of instrumentation, measur asurements and its applications. cal Machinery; Khanna Publishers. principles of Electrical Machines; S. and Electronic Measurements and In	regulation of all types, equivand predetermin rement standard K.Kataria and s strumentation; aw Hill.	ternator alent ci e their ds and t Sons Te Dhanp	rs. ircuit, losses efficiency b ypes of error ex. ex.
re iii. U: ef cc iv. U: in Text Boo • Dr. P • J. B. Referenc • A.K. • Alex • Jame Meas	gulation, EMF, MMI nderstand the basic ficiency, regulation onducting OC and SC nderstand the basic p instruments and mea bks: P. S. Bimbra; Electric Gupta; Theory and p ce Books: Sawhney; Electrical ander Langsdorf A. S es.W.Dally, William surement.	F methods to determine the voltage r c working principle, construction, and applications of transformers an C. principles of instrumentation, measur asurements and its applications. cal Machinery; Khanna Publishers. principles of Electrical Machines; S. and Electronic Measurements and In S.; Theory of AC Machinery; Mc-Gr a.F. Riley, Kenneth G. McConnell	regulation of all types, equivand predetermin rement standard K.Kataria and s strumentation; aw Hill.	ternator alent ci e their ds and t Sons Te Dhanp	rs. ircuit, losses efficiency b ypes of error ex. ex.
re iii. U ef cc iv. U in Text Boo • Dr. P • J. B. Referenc • A.K • Alex. • Jame Meas • Say N	gulation, EMF, MMI nderstand the basic ficiency, regulation onducting OC and SC nderstand the basic p instruments and mea bks: P. S. Bimbra; Electric Gupta; Theory and p ce Books: Sawhney; Electrical ander Langsdorf A. S es.W.Dally, William surement. M.G.; Performance a	F methods to determine the voltage r c working principle, construction, and applications of transformers an C. principles of instrumentation, measur asurements and its applications. cal Machinery; Khanna Publishers. cal Machinery; Khanna Publishers. principles of Electrical Machines; S. and Electronic Measurements and In S.; Theory of AC Machinery; Mc-Gr n.F. Riley, Kenneth G. McConnell and Design of AC Machines; ELBS.	regulation of all types, equivand predetermin rement standard K.Kataria and S strumentation; aw Hill. ; Instrumentat	ternator alent ci e their ds and t Sons Te Dhanp ion for	rs. ircuit, losses efficiency b ypes of error ex. atRai. • Engineerin
re iii. U: ef cc iv. U: in Text Boo • Dr. P • J. B. Referenc • A.K. • Alex • Jame Meas • Say I	gulation, EMF, MMI nderstand the basic ficiency, regulation onducting OC and SC nderstand the basic p instruments and mea bks: P. S. Bimbra; Electric Gupta; Theory and p ce Books: Sawhney; Electrical ander Langsdorf A. S es.W.Dally, William surement. M.G.; Performance a	F methods to determine the voltage r c working principle, construction, and applications of transformers an C. principles of instrumentation, measur asurements and its applications. cal Machinery; Khanna Publishers. principles of Electrical Machines; S. and Electronic Measurements and In S.; Theory of AC Machinery; Mc-Gr a.F. Riley, Kenneth G. McConnell	regulation of all types, equivand predetermin rement standard K.Kataria and S strumentation; aw Hill. ; Instrumentat	ternator alent ci e their ds and t Sons Te Dhanp ion for	rs. ircuit, losses efficiency b ypes of error ex. atRai. • Engineerin
re iii. U: ef cc iv. U: in Text Boo • Dr. P • J. B. Referenc • A.K. • Alex • Jame Meas • Say I	gulation, EMF, MMI nderstand the basic ficiency, regulation onducting OC and SC nderstand the basic p instruments and mea oks: P. S. Bimbra; Electric Gupta; Theory and p ce Books: Sawhney; Electrical ander Langsdorf A. S es.W.Dally, William surement. M.G.; Performance a iam D. Cooper, A.E	F methods to determine the voltage r c working principle, construction, and applications of transformers an C. principles of instrumentation, measur asurements and its applications. cal Machinery; Khanna Publishers. cal Machinery; Khanna Publishers. principles of Electrical Machines; S. and Electronic Measurements and In S.; Theory of AC Machinery; Mc-Gr n.F. Riley, Kenneth G. McConnell and Design of AC Machines; ELBS.	regulation of all types, equivand predetermin rement standard K.Kataria and S strumentation; aw Hill. ; Instrumentat	ternator alent ci e their ds and t Sons Te Dhanp ion for	rs. ircuit, losses efficiency b ypes of error ex. atRai. • Engineerin
re iii. U: ef cc iv. U: in Text Boo • Dr. P • J. B. Referenc • A.K. • Alex. • Jame Meas • Say N • Willi	gulation, EMF, MMI nderstand the basic ficiency, regulation onducting OC and SC nderstand the basic p instruments and mea oks: P. S. Bimbra; Electric Gupta; Theory and p ce Books: Sawhney; Electrical ander Langsdorf A. S es.W.Dally, William surement. M.G.; Performance a iam D. Cooper, A.E	F methods to determine the voltage r c working principle, construction, and applications of transformers an C. principles of instrumentation, measur asurements and its applications. cal Machinery; Khanna Publishers. cal Machinery; Khanna Publishers. principles of Electrical Machines; S. and Electronic Measurements and In S.; Theory of AC Machinery; Mc-Gr LF. Riley, Kenneth G. McConnell and Design of AC Machines; ELBS. D. Helfrick; Electronic Instrumentat	regulation of all types, equivand predetermin rement standard K.Kataria and S strumentation; aw Hill. ; Instrumentat	ternator alent ci e their ds and t Sons Te Dhanp ion for	rs. ircuit, losses efficiency b ypes of error ex. atRai. • Engineerin
re iii. U: ef cc iv. U: in Text Boo • Dr. P • J. B. Referenc • A.K. • Alex. • Jame Meas • Say N • Willi	gulation, EMF, MMI nderstand the basic ficiency, regulation onducting OC and SC nderstand the basic p instruments and mea oks: P. S. Bimbra; Electric Gupta; Theory and p ce Books: Sawhney; Electrical ander Langsdorf A. S es.W.Dally, William surement. M.G.; Performance a iam D. Cooper, A.E	F methods to determine the voltage r c working principle, construction, and applications of transformers an C. principles of instrumentation, measur asurements and its applications. cal Machinery; Khanna Publishers. cal Machinery; Khanna Publishers. principles of Electrical Machines; S. and Electronic Measurements and In S.; Theory of AC Machinery; Mc-Gr LF. Riley, Kenneth G. McConnell and Design of AC Machines; ELBS. D. Helfrick; Electronic Instrumentat	regulation of all types, equivand predetermin rement standard K.Kataria and S strumentation; aw Hill. ; Instrumentat	ternator alent ci e their ds and t Sons Te Dhanp ion for	rs. ircuit, losses efficiency b ypes of error ex. atRai. • Engineerin
re iii. U: ef cc iv. U: in Text Boo • Dr. P • J. B. Reference • A.K • Alex. • Jame Meas • Say N • Willi Prent	gulation, EMF, MMI nderstand the basic ficiency, regulation onducting OC and SC nderstand the basic p instruments and mea oks: P. S. Bimbra; Electric Gupta; Theory and p ce Books: Sawhney; Electrical ander Langsdorf A. S es.W.Dally, William surement. M.G.; Performance a iam D. Cooper, A.E	F methods to determine the voltage r c working principle, construction, and applications of transformers an C. principles of instrumentation, measur asurements and its applications. cal Machinery; Khanna Publishers. cal Machinery; Khanna Publishers. principles of Electrical Machines; S. and Electronic Measurements and In S.; Theory of AC Machinery; Mc-Gr LF. Riley, Kenneth G. McConnell and Design of AC Machines; ELBS. D. Helfrick; Electronic Instrumentat	regulation of all types, equivand predetermin rement standard K.Kataria and S strumentation; aw Hill. ; Instrumentat	ternator alent ci e their ds and t Sons Te Dhanp ion for	rs. ircuit, losses efficiency b ypes of error ex. atRai. Engineerin t Techniques Sem.
re iii. U: ef cc iv. U: in Text Boo • Dr. P • J. B. Referenc • A.K. • Alex. • Jame Meas • Say N • Willi	gulation, EMF, MMI nderstand the basic ficiency, regulation onducting OC and SC nderstand the basic p instruments and mea oks: P. S. Bimbra; Electric Gupta; Theory and p ce Books: Sawhney; Electrical ander Langsdorf A. S es.W.Dally, William surement. M.G.; Performance a iam D. Cooper, A.E	F methods to determine the voltage r c working principle, construction, and applications of transformers an C. principles of instrumentation, measur asurements and its applications. cal Machinery; Khanna Publishers. cal Machinery; Khanna Publishers. principles of Electrical Machines; S. and Electronic Measurements and In S.; Theory of AC Machinery; Mc-Gr n.F. Riley, Kenneth G. McConnell and Design of AC Machines; ELBS. D. Helfrick; Electronic Instrumentat Course Plan	regulation of all types, equivand predetermin rement standard K.Kataria and S strumentation; aw Hill. ; Instrumentat	ternator alent ci e their ds and t Sons Te Dhanp ion for urement	rs. ircuit, losses efficiency by ypes of error ex. atRai. • Engineerin t Techniques s Sem. Exam
re iii. U: ef cc iv. U: in Text Boo • Dr. P • J. B. Referenc • A.K. • Alex • Jame Meas • Say N • Willi Prent	gulation, EMF, MMI nderstand the basic ficiency, regulation onducting OC and SC nderstand the basic p instruments and mea bks: P. S. Bimbra; Electric Gupta; Theory and p ce Books: Sawhney; Electrical ander Langsdorf A. S es.W.Dally, William surement. M.G.; Performance a iam D. Cooper, A.D tice Hall.	F methods to determine the voltage r c working principle, construction, and applications of transformers an C. principles of instrumentation, measur asurements and its applications. cal Machinery; Khanna Publishers. cal Machinery; Khanna Publishers. principles of Electrical Machines; S. and Electronic Measurements and In S.; Theory of AC Machinery; Mc-Gr n.F. Riley, Kenneth G. McConnell and Design of AC Machines; ELBS. D. Helfrick; Electronic Instrumentat Course Plan	egulation of alt types, equivand predetermin rement standard K.Kataria and S strumentation; aw Hill. ; Instrumentat ion and Measu	ternator alent ci e their ds and t Sons Te Dhanp ion for urement	rs. ircuit, losses efficiency b ypes of error ex. atRai. • Engineerin t Techniques Sem.

Generators; <i>Losses</i> ; Power Flow Diagram; Efficiency, Condition for		
Maximum Efficiency; <i>Applications</i> .		
II D.C. Motors: Back EMF; Speed and Torque Equation; Starting, Testing of D.C. Motors, Brake Test; Swinburne's Test; Performance and operating characteristics of Shunt, Series and Compound Motors; <i>Applications</i> .	7	15%
FIRST INTERNAL EXAM		
IIIThree Phase Induction Motor: Production of Rotating MagneticIIIField; Torque Equation; Torque Slip Characteristics, EquivalentCircuit; Application. Single Phase Induction Motor: Different Types; Application.	7	15%
Alternators: Construction Details, Type; EMF Equation (WindingIVFactor need not be derived); Synchronous Impedance; Regulation byEMF and MMF Method.	7	15%
SECOND INTERNAL EXAM		
V Transformer : <i>Construction, Working, Types</i> , EMF Equation, No Load Current; Equivalent Circuit; Phasor Diagram, Regulation, Efficiency, Determination of Regulation and Efficiency from O.C. and S.C. tests; <i>Cooling of Transformer</i> ; Applications.	7	20%
VI Introduction to Instrumentation and its Applications: Classification of Instruments; Standards and Calibration; Errors in Instruments and Measurements; Classification of Transducers; Strain Gauges; L.V.D.T. (Linear Variable Differential Transformer), Mc.Leod Gauge, Pirani Gauge, Hot-wire Anemometers; Constant Temperature and Constant Current Methods.	7	20%
END SEMESTER EXAM		

PART A

- Answer all 8 questions of 3 marks each.
- 1 question each from modules I to IV and 2 questions each from modules V & VI.

Estd.

- Answer any 2 full questions out of 3 for each module.
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks.
- Each full question can have maximum of 4 sub questions, if needed.

Course code	Course Name:	L-T-P-Credits	Year of Introduction
ME237	WELDING AND MACHINE TOOLS LAB	0-0-3-1	2016
Prerequisite: N	il		1
Course Objecti	ves:		
• Pr	ovide practical experience on various machining ope	erations using Lath	le.
• Fa	miliarization with basics of welding.		
• Pr	ovide practical experience in carrying out welding.	$\Delta \Lambda \Lambda$	
1	I JADDOL MIL	TATAT	
List of Exercise	es/ Experiments (Minimum 10 are mandatory)	CAL	
(a). Machine To	ools: IINII\/ED.CIT\	/	
1. Study of Pre	ecision Tools and Measuring Instruments.		
<u>Equipment:</u>	Vernier Calliper, Micrometer, Surface Plate, Sur	face Gauge, Slip	Gauge, Screw
Pitch Gauge	e, Feeler Gauge, Dial Gauge, <mark>Sine Gauge, Plug Gau</mark>	ge, Straight edge	Gauge.
2. Study of No	omenclature of Single Point Cutting Tool.		
-	HSS Single point cutting tool.		
3. Study of Ce	ntre Lathe.		
<u>Equipment:</u>	Centre Lathe.		
	llowing lathe operations on a work piece for give	n dimensions :	
4. Plane Turni	-		
	HSS Single point cutting tool (V-tool), Tool ho	older, Surface gai	uge, steel rule,
outside call	iper, Jenny calliper, and Vernier calliper.		
5. Step Turnin	σ		
	HSS Single point cutting tool (V-tool), Parting t	ool. Tool holder.	Surface gauge.
	utside calliper, Jenny calliper, and Vernier calliper.		5 6 6 7
6. Grooving.			
	HSS Single point cutting tool (V-tool), Parting t	ool, Tool holder,	Surface gauge,
steel rule, o	utside calliper, Jenny calliper, and Vernier calliper.		
7 Topor True:			
7. Taper Turni	-	ldar Surface and	una staal mila
	HSS Single point cutting tool (V-tool), Tool he iper, Jenny calliper, Vernier calliper and double end		ige, sieei ruie,
ouiside cull	ιρει, σεπιιγ εαπιρεί, νει πιεί εαπιρεί απα ασάδιε επά	spunner.	
8. Thread Cutt	ing.		
	HSS Single point cutting tool (V-tool), Tool he	older, Surface gai	uge, steel rule,
	iper, Jenny calliper, Vernier calliper Centre gauge a		•
		_ 0	

(b) Welding:

- 9. Study of Welding Equipment and Procedures. <u>Equipment:</u> MMAW, MIG, TIG, SAW.
- 10. To study various types of welding joints and practice edge preparation. <u>Equipment:</u> Butt joint, Lap joint, T-Joint, Corner joint, Workpiece, File/Grinder, Wirebrush.
- 11. To Prepare a Single V-Butt Joint using Arc Welding Process. <u>Equipment:</u> Arc welding machine, Mild steel work pieces, Mild steel Electrodes, Electrode holder, Ground clamp, Flat nose tong, Face shield, Apron, Hand gloves, work table, Bench vice, Rough flat file, steel rule, wire brush, Try square, Bell peen hammer, chipping hammer, chisel, grinding machine.
- 12. To Prepare a Lap Joint using Arc Welding Process. <u>Equipment:</u> Arc Welding Machine, Mild Steel Work Pieces, Mild Steel Electrodes, Electrode Holder, Ground Clamp, Face Shield, Apron, Hand Gloves, Work Table, Bench Vice, Rough Flat File, Try Square, Bell Peen Hammer, Chipping Hammer, Chisel, Grinding Machine.
- 13. To Prepare a T Joint using Arc Welding Process <u>Equipment:</u> Arc Welding Machine, Mild Steel Work Pieces, Mild Steel Electrodes, Electrode Holder, Ground Clamp, Face Shield, Apron, Hand Gloves, Work Table, Bench Vice, Rough Flat File, Try Square, Bell Peen Hammer, Chipping Hammer, Chisel, Grinding Machine.
- 14. To prepare a Butt Joint Using TIG Welding Process. <u>Equipment:</u> TIG Welding Machine, Welding Cable With Earth Clamps, Gas Cooled TIG Welding Torch, Inert Argon Gas Hose Pipe, Tungsten Rod, Flow Meter, Mild Steel Work Pieces, Face Shield, Apron, Hand Gloves, Work Table, Bench Vice, Rough Flat File, Try Square, Ball Peen Hammer, Chipping Hammer, Chisel, Grinding Machine.
- 15. To prepare a Lap Joint Using TIG Welding Process. <u>Equipment:</u> TIG Welding Machine, Welding Cable With Earth Clamps, Gas Cooled TIG Welding Torch, Inert Argon Gas Hose Pipe, Tungsten Rod, Flow Meter, Mild Steel Work Pieces, Face Shield, Apron, Hand Gloves, Work Table, Bench Vice, Rough Flat File, Try Square, Bell Peen Hammer, Chipping Hammer, Chisel, Grinding Machine.
- 16. To Prepare a Butt Joint using MIG Welding Process. <u>Equipment:</u> MIG Welding Machine, Welding Cable With Earth Clamps, MIG Welding Torch, CO₂ Gas Flow Meter with Preheater, Contact Tips, Input Gas Hose Pipes, Mild Steel Work Pieces, Face Shield, Apron, Hand Gloves, Work Table, Bench Vice, Rough Flat File, Try Square, Bell Peen Hammer, Chipping Hammer, Chisel, Grinding Machine.
- 17. To Prepare a Lap Joint using MIG Welding Process. <u>Equipment:</u> MIG Welding Machine, Welding Cable With Earth Clamps, MIG Welding Torch,

CO₂ Gas Flow Meter With Preheater, Contact Tips, Input Gas Hose Pipes, Mild Steel Work Pieces, Face Shield, Apron, Hand Gloves, Work Table, Bench Vice, Rough Flat File, Try Square, Bell Peen Hammer, Chipping Hammer, Chisel, Grinding Machine.

18. To Prepare a T Joint using MIG Welding Process.

<u>Equipment:</u> MIG Welding Machine, Welding Cable With Earth Clamps, MIG Welding Torch, CO₂ Gas Flow Meter With Preheater, Contact Tips, Input Gas Hose Pipes, Mild Steel Work Pieces, Face Shield, Apron, Hand Gloves, Work Table, Bench Vice, Rough Flat File, Try Square, Bell Peen Hammer, Chipping Hammer, Chisel, Grinding Machine.

19. Demonstration of Submerged Arc Welding Process.

<u>Equipment:</u> Power Source, Welding Head Trolley, Welding Clamp With Earth Clamp, Welding Cable With Earth Lug, Control Cable, Track, Contact Tip, Contact Pole, Flux Hose, Flux Hopper.

Expected Outcome:

After successful completion of the course, the student will be able to:

- i. Machine the given specimen to required dimension using Lathe.
- ii. Demonstrate the principle of operation of MMAW, TIG, MIG & SAW.
- iii. Prepare specified type of joint using various welding processes.

Text Book(s):

- 1. O.P Khanna; Welding Technology; Dhanpat Rai Publications.
- 2. Acharkan. N.; Machine Tool Design Vol. 1 to 4, MIR Publication.
- 3. Chapman; Workshop Technology, Vol II, ELBS.

Course code	Course Name:	L-T-P- Credits	Year of Introduction
ME238	ADVANCED MACHINE TOOLS LAB	0-0-3-1	2016
Prerequisite:	Nil		
Course Objec	tives.		
•	ntroduction to various Machining process.		
	For familiarization with the fundamentals of CN	C Machine.	A
	Fo introduce the student to CNC operations.	ALAN	$\vee 1$
List of Exercis	ses/ Experiments (Minimum 10 are mandato	ory)	
<u>Equipmen</u>	ng on Lathe Machine <u>t:</u> Cutting Saw, Center Lathe, Pedestal Grinder l Holder, Center Drill, Live Center, Stock and I		8 8
5	Drilling Machines. <u>r</u> Radial Drilling Machine.		
3. Study of N <u>Equipment</u>	Iomenclature of Drill Bit. <u>:</u> Drill Bit.		
<u>Equipment</u>	e Given Work Piece as Required. <u>t:</u> <i>Mild Steel Work Piece, Drill <mark>B</mark>it, Lot Drill Bi</i> Shaping Machines.	it, Drill Chuck.	
•	t: Shaper Machine.		
	n V- Machining on the Given Work Piece. <u>t:</u> Shaper Machine, Punching Machine, Steel R	Rule, Hammer,	Shaper Tool, Try Square.
	n U-Cut on the Given Work Piece. <u>t:</u> Shaper machine, Steel rule, Hammer, Shaper	r tool, Try Squo	ıre.
8. Study of S Equipment	lotting Machines2014t:Slotter.		
	Slot on the Given Work Piece. <u>t:</u> Slotting Machine, Steel rule, Hammer, Shape	er tool, Try Squ	uare.
	ternal Key Way Using Slotter. <u>t:</u> Slotting Machine, Steel Rule, Hammer, Shap	er Tool, Try Sq	ware.
•	Iilling Machines. <u>t:</u> Milling Machine.		

- 12. To Perform Plane Milling Operation on the Given Specimen. <u>Equipment:</u> Milling Machine, Work Piece, Steel Ruler.
- 13. To Make Spur Gear on a Given Work Piece. <u>Equipment:</u> Steel Rule, Milling Cutter, Spanner, Mandrel, Dog Carrier.
- 14. To make Bevel Gear on a Work Piece. <u>Equipment:</u> Steel Rule, Milling Cutter, Spanner, Mandrel, Dog Carrier.
- 15. Study and Demonstration of CNC Machine. <u>Equipment:</u> CNC Machine.
- 16. To Program and Run Milling Operation Using CNC Machine. <u>Equipment:</u> CNC Machine, Computer.
- 17. To Program and Execute Turning Operation Using CNC Lathe. <u>Equipment:</u> CNC Machine, Computer.
- 18. Study of Cutting Process. <u>Equipment:</u> Variety of Cutting Equipment.

19. Study of CNC Plasma Arc Cutting (working principle and procedure only).

Course Outcome:

Upon successful completion of the course, the student will be able to :

- i. Machine the given work piece to specified dimensions.
- ii. Understand the fundamentals of CNC machining.

Text Book(s):

- Chapman; Workshop Technology, Vol II; ELBS.
- HMT; Production Technology; Tata McGraw Hill.
- Yoram Koren; Numerical Control of Machine Tools; McGraw-Hill.
- Acharkan. N.; Machine Tool Design Vol. 1 to 4; MIR Publication.

Course N	o: Course Name:	L-T-P-Credits	Year of Intro	duction
SB201	MECHANICS OF SOLIDS	3-1-0-4	2016	
Prerequis	ites: -Nil			
Course O	bjectives:			
1. To im	part understanding of the basic principles	and foundations of So	olid Mechanics.	
_	ve an ability to calculate stresses and defor	-		
3. To im	part the ability to apply basic principles of	f Solid Mechanics to s	solve engineering pre-	oblems.
Syllabus:	ADI ARDI II	KAIA	N.A.	
	Strain – Elastic Constants - Bending			
	Bending Stress – Shear Stress – Deflection			essels –
Torsion in	Circular Shafts – Theory of Columns- Pr	incipal Stresses- Failu	are criterion.	
-	Outcome:	SITY		
At the end	of the course students will be able to:	COLL 1		
	stand the stresses and deformations caused	d by externally applie	d forces.	
	late elastic constants for a given material.			
	the bending moment and shear force diag	-		
	late the stresses and its distribution over the	e crossection for a be	am.	
	ne elastic curve of a beam.			
	stand the concept of torsion and its application			
	the buckling theory for the analysis of co	lumns.		
Text Bool				
	l R. K; Strength of Materials; Laksh <mark>m</mark> i Pu			
• Timo	shenko S. P.; Strength of Materials Part 1;	D. Van Nostrand Cor	npany Inc .New Yor	ːk.
D 0				
Reference				
	namrutham, R. Narayan; Strength of Mate	-	U I I	
	avikatti <mark>; Strength of Materi</mark> als; Vikas Pub			
• Sham	es I. H., Pitarresi, James. M; Introduction t	to Solid Mechanics; P	rentice Hall of India	ι.
~ ~				
Course P	an:			C.
Madel	0014		тт	Sem.
Module	Content		Hours	Exam
	Deging Introduction (* Marken)	Caliday Transa of I	and and	Marks
	Basics: Introduction to Mechanics of		1	
F	Stresses; Definition of Uniaxial, Biaxial a			
	Stress and Strain: Tension, Compression			1.50/
	Hooke's Law of Material Behaviour; B			15%
	Composite bar; Temperature Stresses; P	'oisson's Ratio; Stres	s - Strain 6	
	Diagram; Working Stress, Factor of Saf Moduli and relationship between them.			

Bending Moment and Shear Force: Introduction to Types of Supports;Beams and Loads, Shear Force and Bending Moment Diagrams forVarious Types of Statically Determinate Beams with Various LoadingCombinations (Cantilever, Simply Supported and Overhanging Beams);Relation between Load, Shear Force and Bending Moment.	8	15%
FIRST INTERNAL EXAM		
Stresses in Beams: Theory of Simple Bending, Assumptions; Section Modulus, Flexural Rigidity; Stresses in Symmetrical Sections; Bending Stress Distribution.	5	15%
Shear Stress: Shear stress Distribution in Beams, Assumptions; Stress in Various Cross Sections.	4	
Deflection: Differential Equation of the Elastic Curve; Slope and Deflection of Beams by Method of Successive Integration; Moment Area Theorem.	8	15%
SECOND INTERNAL EXAM		
Thin Walled Pressure Vessels: Introduction; Biaxial Tension and Compression in Thin Walled Pressure Vessels (Cylindrical and Spherical).	4	20%
Torsion: Introduction to Torsion - Torsion of Circular Shafts; Shear Stresses, Shear Deformation, Strain Energy.	4	1
Theory of Columns: Introduction to Columns; Buckling Theory, Euler's Formula for Long Columns, Assumptions and Limitations, Effect of End Conditions, Slenderness Ratio.	6	
Combined Stresses: Principal Stresses and Planes, Mohr's Circle Representation of Stress in 2D problems. Combined Loads: Failures (Fracture, Yielding, Loss of Stability) - Hypothesis of Failure.	8	20%
	Beams and Loads, Shear Force and Bending Moment Diagrams for Various Types of Statically Determinate Beams with Various Loading Combinations (Cantilever, Simply Supported and Overhanging Beams); Relation between Load, Shear Force and Bending Moment. FIRST INTERNAL EXAM Stresses in Beams: Theory of Simple Bending, Assumptions; Section Modulus, Flexural Rigidity; Stresses in Symmetrical Sections; Bending Stress: Shear stress Distribution in Beams, Assumptions; Stress in Various Cross Sections. Deflection: Differential Equation of the Elastic Curve; Slope and Deflection: Differential Equation of the Elastic Curve; Slope and Deflection of Beams by Method of Successive Integration; Moment Area Theorem. SECOND INTERNAL EXAM Thin Walled Pressure Vessels: Introduction; Biaxial Tension and Compression in Thin Walled Pressure Vessels (Cylindrical and Spherical). Torsion of Circular Shafts; Shear Stresses, Shear Deformation, Strain Energy. Theory of Columns: Introduction to Columns; Buckling Theory, Euler's Formula for Long Columns, Assumptions and Limitations, Effect of End Conditions, Slenderness Ratio. Combined Stresses: Principal Stresses and Planes, Mohr's Circle	Beams and Loads, Shear Force and Bending Moment Diagrams for Various Types of Statically Determinate Beams with Various Loading Combinations (Cantilever, Simply Supported and Overhanging Beams); Relation between Load, Shear Force and Bending Moment.8FIRST INTERNAL EXAMStresses in Beams: Theory of Simple Bending, Assumptions; Section Modulus, Flexural Rigidity; Stresses in Symmetrical Sections; Bending Stress Distribution.5Shear Stress: Shear stress Distribution in Beams, Assumptions; Stress in Various Cross Sections.4Deflection: Differential Equation of the Elastic Curve; Slope and Deflection of Beams by Method of Successive Integration; Moment Area Theorem.8Torsion: Introduction to Torsion - Torsion of Circular Shafts; Shear Stresses, Shear Deformation, Strain Energy.4Theory of Columns: Introduction to Columns; Buckling Theory, Euler's Formula for Long Columns, Assumptions and Limitations, Effect of End Conditions, Slenderness Ratio.6Combined Stresses: Principal Stresses and Planes, Mohr's Circle Representation of Stress in 2D problems. Combined Loads: Failures (Fracture, Yielding, Loss of Stability) -8

PART A

- Answer all 8 questions of 3 marks each.
- 1 question each from modules I to IV and 2 questions each from modules V & VI.

- Answer any 2 full questions out of 3 for each module.
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks.
- Each full question can have maximum of 4 sub questions, if needed.

Course	Course Name	L-T-P-	Year of
code		Credits	Introduction
SB202	RESISTANCE AND PROPULSION OF SHIPS	3-1-0-4	2016

Prerequisites: -Nil

Course Objectives:

- 1. To be familiar with the concept of Resistance and Propulsion of ships.
- 2. To be familiar with prediction of Resistance of ships, and to estimate machinery power to attain the specified speed.
- 3. To impart knowledge on various types of marine propellers and to familiarize with design.

Syllabus:

Introduction to Resistance and Propulsion of Ships, Components of Ship Resistance, Laws of Comparison, Viscous Resistance, Wave Making Resistance; Other Resistance Components, Model Testing, Determination of Resistance from Series Test Results; Propeller as a Thrust Producing Mechanism, Screw Propeller, Propeller Theories, Interaction Between Hull and Propeller, Cavitation; Design of Propellers, Open Water Tests, Self-Propulsion Tests, Design Charts, Selection of Engine Power, Propeller Strength, Model Testing of Propellers; Resistance Calculation, Model Ship Correlation, Propeller Design, Ship Standardization Trials, Resistance of Advanced Marine Vehicles, Special Types of Propellers.

Expected Outcome:

Upon successful completion of the course, the student will be able to :

- 1. Understand various components of resistance of ships.
- 2. Predict resistance of ships using statistical / methodical series / model tests and estimate effective power.
- 3. Understand the geometry of screw propeller, various propeller theories and interaction between hull & propeller.
- 4. Understand the phenomena of cavitation and its effects of propellers.
- 5. Design propeller using various methodical series/ design charts/ model experiments.
- 6. Understand the principle of operation of various unconventional propulsive devices, and resistance of high speed marine crafts.

Text Books:

- Colearny Dagia Shin Dronul
- J.P. Ghose, R.P. Gokarn<mark>; Basic Ship Propulsion.</mark>
- Eric Tupper; Introduction to Naval Architecture.

Reference Books:

- D.G.M. Watson; Practical Ship Design; Elsevier Ocean Engineering Book Series.
- Lewis, E.U.; Principles of Naval Architecture, SNAME, New Jersey, U.S.A.
- Rawson and Tupper; Basic Ship Theory; Butterworth-Heinemann.
- Lars Larsson & Hoyte C.; Principles of Naval Architecture.
- Raven; Ship Resistance & Flow; The Society of Naval Architects and Marine Engineers.
- Neil Bose; Marine Powering Prediction and Propulsors; The Society of Naval Architects and Marine Engineers.

- Barnaby K.; Basic Naval Architecture.
- H. Schneekluth; V. Bertram; Ship Design for Efficiency and Economy.

	Course Plan		
Module	Content	Hours	Sem. Exam Marks
	Introduction- Resistance of Ships, Components of Ship Resistance	2	
	Dimensional Analysis - Geometrical, Dynamical and Kinematical Similarity, Laws of Comparison- Model-Ship Correlation.	3	
Ι	Viscous Resistance – Turbulent Plate Friction and Plate Resistance, Viscous Pressure Resistance, Influence of Curvature of Ship's Hull, Form Factor, Hull Roughness and its Influence on Frictional Resistance.	2	15%
	Wave Making Resistance– Ship Wave System, Interference Effects, Theoretical Calculation of Wave Making Resistance, Wave Breaking Resistance, Bulbous Bow and its Effects.	2	
	Other Components of Resistance- Air and Wind Resistance, Appendage Resistance, Added Resistance in Waves; Resistance in Restricted Waterways– Resistance in Shallow Water, Resistance in Canals.	3	
II	Model Testing – Modern Tank Testing Facilities, Prediction of Resistance from Model Tests, Tank Wall Effect.	3	15%
	Determination of Resistance from Test Results – Residuary Resistance, Effect of Hull Form on Resistance, Taylor Series, Series 60, B S R A Series, S S P A Series, Etc.; Statistical Analysis of Resistance Data, Holtrop & Mennen's Method, Guldhammer And Harvald's Method.	3	
	FIRST INTERNAL EXAM		
	Introduction to Powering of Ships - Propeller as a Thrust Producing Mechanism; Screw Propeller- Propeller Geometry, Sections, Propeller Drawing, Construction Details.		_
	Law Of Similitude Of Propeller, Propeller Theories- Momentum Theory, Blade Element Theory, Circulation Theory.	3	
III	Interaction Between Hull and Propeller -Wake and Wake Fraction, Resistance Augment and Thrust Deduction Factor, Propulsive Efficiency in Open Water and Behind Conditions, Hull Efficiency, Quasi Propulsive Coefficient, Transmission Efficiency.	3	15%
	Cavitation- Introduction, Types, Cavitation Number, Effects of Cavitation, Prevention of Cavitation, Design for Minimum Cavitation, Cavitation Tests.		
IV	Design of Propellers- Propeller Families and Series; Kt-Kq Diagrams; Design Charts- Bp- Δ , T-J, P-J Charts, Use of Charts in Propeller Design and Performance Study.		15%

	Propeller Strength- Materials and their Qualities, Strength	2	
	Calculation.	2	
	Model Testing Of Propellers- Test Facilities, Laws of		
	Comparison, Open Water Tests, Self- Propulsion Tests, Ship	3	
	Standardization Trials.		
	SECOND INTERNAL EXAM		
	Special Types of Propellers- Shrouded Propellers- Action of		
	Propeller in a Nozzle, Wake Fraction and Thrust Deduction		
	Fraction in Nozzles, Load Factor of Nozzles, Design of		
V	Propeller Nozzle System, Design Charts.	8	20%
v	Controllable Pitch Propellers- Advantages, Special Features in	0	20%
	Geometry, Design Aspects.		
	Super Cavitating Propellers, Application.		
	Other Propulsion Devices- Vertical Axis Propellers, Water Jet	3	
VI	Propulsion, Sail, Paddle Wheels, Electromagnetic Propulsion.		20%
V I	High Speed Craft and Advanced Marine Vehicles-		20%
	Introduction, Types; Resistance of Planing Crafts, Catamarans,	5	
	SWATH, Hydrofoil Crafts.		
	END SEMESTER EXAM		

Maximum marks : 100

Time : 3 hours

PART A

- Answer all 8 questions of 3 marks each.
- 1 question each from modules I to IV and 2 questions each from modules V & VI.

2014

- Answer any 2 full questions out of 3 for each module.
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks.
- Each full question can have maximum of 4 sub questions, if needed.

Course	No: Course Name:	L-T-P-Credits	Year of Intro	duction
SB20		DS 3-1-0-4	2016	
_	sites: -Nil			
	D bjectives:			
1	rovide a foundation in the fundamentals			
-	rovide practice in the analytical formula	-	olems.	
	troduce the theory of surface gravity w			
	troduce computational fluid dynamics.	TIZATAA	A	
Buoyancy Incompre Waves-In Expected Upon suc 1. deter 2. unde 3. deter 4. unde 5. know 6. demo 8. demo 8. demo data. 9. demo Text Boo • Yunu Units	roperties of Fluids-Fluid Pressure- Pressy & Floatation-Fluid Kinematics-Fluidssible Flows-Turbulent Flow Throughtroduction to Computational Fluid Dyn I Outcome: cessful completion of the course, the stamine the hydrostatic forces on submergerstand buoyancy and stability mine velocity, pressure and acceleration rstand rotational and irrotational flows, where understanding of laminar and esimple problems. onstrate understanding of external fluid onstrate basic understanding of gravity constrate understanding of the fundament onstrate understanding of the fundament of th	low Visualization - Flui gh Pipes-Flow around sul amics. udent will be able to red plane and curved surfaces in in incompressible and invis stream functions and velocit es. turbulent flows through pi flow and the concepts of dra y waves and calculate wave tal concepts in computationa	d Dynamics – omerged bodies s. scid flows. y potentials. pes, losses in p g and lift. parameters fro l fluid dynamics. and Application	-Viscous -Gravity ipes and m given
SKSFrank	h K. Kundu, Ira M. Cohen – Fluid Mec Som, C Biswas; Indtroduction to Fluid I k M. White; Fluid Mechanics; Tata Mc andaraman C.P, Rudramoorthy R., Flui	Mechanics and Fluid Machin Graw Hill.		
Module	Conte	ent	Hours	Exam
				Marks
			1.4.	
	Basics: Fluids, Application areas of F	<i>luid Mechanics</i> , No-Slip con	idition,	
Ŧ	Basics: Fluids, <i>Application areas of F</i> Brief History, Classification of Fluid	· •	iternal	1 201
Ι		l Flows-Viscid, Inviscid; Ir	iternal,	15%

r			
	Properties of Fluids: Property- Intensive & extensive properties; Principle of Continuum; Density & Specific gravity; Viscosity-Dynamic Viscosity, Newtonian & Non Newtonian Fluids, Viscosity & Momentum Transfer, Effect of Temperature on Viscosity, Significance of Kinematic Viscosity; Surface Tension; Compressibility & Bulk Modulus; Vapour Pressure-partial pressure, Cavitation.	3	
	Fluid Pressure: Pressure at a point, Pascal's Law, Pressure Variation in a fluid at rest, Absolute, Gauge, Atmospheric and Vacuum Pressures.	1	
	Pressure Measurement (Theory Only): <i>Manometers – Piezometer, U-</i> <i>Tube Manometer, Single Column Manometer; Differential Manometers-</i> <i>U-Tube Differential Manometer, Inverted U Tube Differential</i> <i>Manometer.</i>	1	
П	Hydrostatic Forces on Surfaces: Total Pressure and Centre of Pressure; Vertical Plane Surface Submerged in Liquid; Horizontal Plane Surface Submerged in Liquid; Inclined Plane Surface Submerged in Liquid; Curved Surface Submerged in Liquid.	3	15%
	Buoyancy and Floatation: Buoyancy, Centre of Buoyancy; Metacentre- Metacentric Height, Analytical Method for Metacentric Height; Conditions of Equilibrium of Floating and Submerged Bodies- Stability of a Submerged Body, Stability of a Floating Body; Experimental Method for Determination of Metacentric Height; Oscillation of a Floating Body.	5	
	FIRST INTERNAL EXAM		
	Fluid Kinematics: Introduction; Lagrangian & Eulerian Method of Describing Fluid Motion; Rate of Flow; Continuity Equation in 1-D- Simple Numericals; Continuity Equation in 3-D; Velocity & Acceleration- Local Acceleration and Convective Acceleration	2	
	Velocity Potential Function and Stream Function; Equipotential Line; Line of Constant Stream Function; Flow Net; Relation Between Stream Function and Velocity Potential Function.	2	
III	Types of Fluid Motion-Linear Translation, Linear Deformation, Angular Deformation, Pure Rotation; Vorticity; Vortex Flow- Forced Vortex Flow, Free Vortex Flow, Equation of motion for Vortex Flow, Equation of Forced Vortex Flow- Numerical Problems, Equation of Free Vortex Flow.	3	15%
	Flow Visualization: Streamlines & Streamtubes; Pathlines; Streaklines; Timelines; Refractive Flow Visualization Techniques; Surface Flow Visualization Techniques.	1	
IV	Fluid Dynamics: Introduction; Equations of Motion; Euler's Equation of Motion; Bernoulli's Equation from Euler's Equation, Assumptions made in the derivation of Bernoulli's Equation –Numerical Problems; Bernoulli's Equation for Real Fluid- Numerical Problems; The Momentum Equation, Moment of Momentum Equation – Numerical	7	15%

	Problems.		
	SECOND INTERNAL EXAM		
	Viscous Incompressible Flows: Introduction; Reynolds's Number; General Viscosity Law & Assumptions; Navier Stokes Equations; Flow of Viscous Fluid Through Circular Pipe – Numerical Problems; Flow of Viscous Fluid Between Two Parallel Plates- Numerical Problems; Loss of Head Due to Friction in Viscous Flow.	5	
	Turbulent Flow Through Pipes: Introduction; Reynold's Experiment; Frictional Loss in Pipe Flow; Hydrodynamically Smooth & Rough Boundaries; Resistance of Smooth & Rough Pipes; Loss of Energy in Pipes; Loss of Energy Due to Friction- Numerical Problems; Minor Energy Losses- Theory Only.	3	
V	External Flow: Boundary Layer Flow –Laminar Boundary Layer, Turbulent Boundary Layer, Laminar Sub Layer, Boundary Layer Thickness; Separation of Boundary Layer; Force Exerted by a Flowing Fluid on a Stationary Body; Expression for Drag & Lift- Numerical Problems; Drag on a Sphere; Drag on a Cylinder; Development of Lift on a Circular Cylinder – Flow Pattern around cylinder when constant circulation is imparted to the cylinder, Flow over Cylinder due to constant circulation, Lift force acting on rotating Cylinder, Drag force acting on rotating cylinder, Expression for lift coefficients of rotating cylinder, Location of stagnation points in uniform flow field; Development of Lift on an Airfoil.	6	20%
VI	Gravity Waves: The wave Equation; Wave Parameters; Surface Gravity Waves; Features of Surface Gravity Waves- Pressure change due to wave motion, Particle path and streamline, Energy Considerations; Approximations for Deep and Shallow water.	9	20%
	Introduction to Computational Fluid Dynamics: Introduction and Fundamentals; Solution Procedure.	2	

PART A

- Answer all 8 questions of 3 marks each.
- 1 question each from modules I to IV and 2 questions each from modules V & VI.

- Answer any 2 full questions out of 3 for each module.
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks.
- Each full question can have maximum of 4 sub questions, if needed.

Course code	Course Name	L-T-P- Credits	Year of Intr	oduction	
SB204	STABILITY OF SHIPS AND	3-1-0-4	2016	<u>.</u>	
50204	SUBMARINES	5-1-0-4	2010)	
Prerequi					
-	bjectives:				
	part the basic principles and conditions of stability o	of ships.			
	niliarise solving of Naval Architectural stability pro	-			
	niliarise stability considerations of submerged bodie				
Syllabus					
-	n to Stability of Ships; Initial Stability- Transv	erse Stability; L	ongitudinal	Stability;	
	t Large Angles; Dynamical Stability, Inclining E		e	•	
Damaged	Stability and Calculation by Lost Buoyan	_		-	
U	ndations of Classification Societies and Government		-		
	Outcome:		<u> </u>		
-	sful completion of the course, the student will	be able to:			
1. Under	stand the equilibrium conditions of stability of ships	5.			
	ship stability problems using numerical integrations				
3. Read	and understand ship stability booklet meeting IMO S	Stability criteria.			
	stand the purpose and procedure of inclining experin	-			
5. Provid	e subdivision and solve trim calculations.				
6. Under	stand the stability problem of submarines.				
Text Boo	ks:				
• Rawse	on and Tupper; Basic Ship Theory; Butterworth-Heir	nemann.			
• D.R. I	Derret; Ship Stability for Masters and Mates 5E; But	terworth-Heinem	ann.		
Referenc	Books	_			
	upper, Introduction to Naval Architecture.	Law Lawson LL C			
	, E.U.; Principles of Naval Architecture, SNAME, N ssalos et al 2000; Contemporary Ideas on Ship Stabi	•			
	Biran; Ship Hydrostatics and Stability; Butterworth-I		nice Liu.		
			1 Auchite star	na Cariaa.	
	S. Moore; Edited by J. Randolph Paulling (2010); F	-	a Architectur	re Series:	
	Stability, The Society of Naval Architects and Marin				
• H. Scl	neekluth and V. Bertram; Ship Design for Efficience	ey and Economy.			
	Course Plan	· · · · · · · · · · · · · · · · · · ·		C	
Madada	Contant		TT arrest	Sem.	
Module	Content		Hours	Exam	
	Later heating to Calling of Ching Dates	tial Engineering	1	Marks	
	Introduction to Stability of Ships- Potent Equilibrium.	tial Energy an	d 1		
	1 1	autral Condition	<u>c</u> .	4	
Equilibrium Conditions- Stable Unstable, Neutral Conditions; 2					
Ι	Stability Terms.	In alteration C.C.	<u>п</u>	15%	
	Equivolume Inclinations - Shift of C.O.B. due to Inclinations, C.O.B				
	Curve, Metacentre, Pro-Metacentre and Me		-		
	Metacentric Height, Metacentric Curve, Surface of Floatation, Curve				

	of Floatation, Righting Moment and Righting Lever.		
	Heeling Moments due to Wind, Shift of Cargo, Passengers, Turning and Non-Symmetrical Accumulation of Ice.	3	
		1	_
	Effect of Superstructure on Stability.	1	
	Transverse Stability- Introduction.	1	_
	Initial Stability – GM ₀ , GZ at Small Angles of Inclinations, Angle of Loll, Wall Sided Ships; Stability due to Addition, Removal and		
	Transfer (Horizontal, Lateral and Vertical) of Weight, Suspended	5	
II	Weight and Free Surface of Liquids; Stability while Docking and Grounding; Inclining Experiment.		15%
	Large Angle Stability- Diagram of Statistical Stability (GZ-Curve),		
	Characteristics of GZ-Curve; Methods for Calculating the GZ-Curve	4	
	(Krylov, Prohaska, Etc.); Cross Curves of Stability.		
	Dynamical Stability– Definition, Dynamical Stability Criteria.	2	1
	FIRST INTERNAL EXAM		<u> </u>
	Longitudinal Stability – Trim, Longitudinal Metacentre,		
TTT	Longitudinal Centre of Flotation, Moment to Change Trim, Trimming	0	1.50/
III	Moment; Trim Calculations- Addition, Removal and Transfer of	9	15%
	Weight.		
	Damage Stability – Calculations by Lost Buoyancy and Added		
IV	Weight Methods; Deterministic and Probabilistic Approach, Stability	8	15%
	in Waves.		
	SECOND INTERNAL EXAM		
NZ.	Recommendations of Classification Societies and Governmental	0	200/
V	Authorities– Intact and Damage Stability Criteria.	8	20%
M	Stability of Submarines- Items of Weight & its Relations,	8	200/
VI	Equilibrium Conditions, Equilibrium Polygon, Stability in Depth.	ð	20%
	END SEMESTER EXAM		-

Maximum marks : 100

PART A

- Answer all 8 questions of 3 marks each.
- 1 question each from modules I to IV and 2 questions each from modules V & VI.

PART B

- Answer any 2 full questions out of 3 for each module.
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks.
- Each full question can have maximum of 4 sub questions, if needed.

Time : 3 hours

Estd

Course N	o: Course Name:	L-T-P-Credits		ear of duction
SB205	INTRODUCTION TO NAVAL	3-1-0-4		2016
50205	ARCHITECTURE AND SHIP BUILDING	5-1-0-4		
Preregui	sites: -Nil			
_	Dbjectives:			
•	To impart the basic concepts of Naval Architecture a	nd Shipbuilding	σ.	
•	To develop understanding on basic terms and funda		-	nd laws
	used in Naval Architecture.	memar dermiti	ons a	
Syllabus		VIVI		
e	Review, Ship Geometry, Terms and Definitions, l	Role of Naval	Arch	itect in
	Industry; Classification of Ships; Physical Fundam			
	a Ship; Introduction to Ship Structural Members, S	_		
-	Components; Propulsion Machinery, General Arrang			_
	rines, Auxiliary Machinery; Outfitting, Bridge.	entent of Trop	u 101011	i iuno,
,	Outcome:			
-	ssful completion of the course, students will be able to:			
	derstand fundamentals of Naval Architecture.			
	quire knowledge on various types of ships.			
	entify various types of materials used for construction of	of maritime stru	icture	s and to
	entify various major and minor structural components of			
	derstand general arrangement of propulsion pla	_	ous a	uxiliarv
	chinery required for efficient operation of a ship.			<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	derstand various machineries / equipments required	for anchoring.	moor	ing and
	ving operations.	8,		
Text Boo				
	er, E.C.; Introduction to Naval Architecture; Butterwor	th-Heinemann	UK	
	Taylor; Introduction to Marine Engineering.		, 011.	
Reference				
	on & Tupper; Basic Ship Theory, Vol. I & II			
	s, E.U.; Principles of Naval Architecture; SNAME, Ne	W Jersey U.S.	\	
		•	1.	
-	or, D.A.; Merchant Ship Construction; Butterworths, Lo	JIIGOII.		
	art; Ship Design and Construction; SNAME.			
	yres; Ship Construction.			
• Klaas	van Dokkum; Ship Knowledge - A modern encyclopedia; D	OKMAR.		
	Course Plan:	I		~
				Sem.
Module	Content	H	ours	Exam
				Marks
	Historical Review - Ancient Types of Vessels (rafts,		5	
I	ships), The role of Ships in the Ages of the Great Disco	overies.		15%
	Ship Geometry - Terms and Definitions.		2	
	Role of a Naval Architect in the Maritime Industry.		2	

	Types of Ships – Classification.	2	
	Cargo Ships- General Cargo Ships, Bulk Carriers, Container	2	
	Ships, Ro-Ro Ships, Barge Carriers, Tankers.	2	
Ш	Other Ships- Fishing Vessels, Factory Ships, Supply Ships,		15%
	Cable Ships, Ice Breakers, Research Vessels, and Warships.		
	High Speed Crafts- Hydrofoils, Air Cushion Vehicles etc; Small	3	
	Pleasure Crafts- Yachts, Ketches, etc.	5	
	FIRST INTERNAL EXAM		
	Physical Fundamentals- Archimedes Principle, Laws of	3	
	Floatation, Stability, Six Degrees of Freedom.	5	
III	Forces Acting on a Ship- Static Condition in Waves and During	2	15%
	Docking & Launching.	-	1070
	The Ship's Form - Main Dimensions, Lines Plan, Coefficients and	2	
	their Meanings.	2	
	Introduction to Ship Structural Members.	4	
	Shipbuilding Materials- Properties, Compositions.	4	
IV	Structural Components - Bottom Structure, Shell Plating and		15%
	Framing, Decks, Hatches and Hatch Covers, Superstructures,		1070
	Bulkheads, Tanks, Holds, Fore and Aft Structure, Stern and	4	
	Rudder.		
	SECOND INTERNAL EXAM		
	Propulsion Machinery - Development of Ship Propulsion,	3	
	General Arrangement of Propulsion Plants.		
	Main Engines- Diesel Engines, Steam Engines & Turbines, Gas	3	
V	Turbines, Diesel-Electric Drive, Nuclear Power Plants.		20%
	Auxiliary Machinery- Power Supply, Auxiliary Engines for Ship		
	Systems Operation, Auxiliary Engines for Engine Plant Operation,	3	
	Steering Gear.		
	Outfitting - Anchor, Mooring and Towing Equipment, Cargo		
	Handling Equipment, Rigging, Life-Saving Appliances and Fire	5	
	Fighting Equipment, Heating, Ventilation and Air-Conditioning,		2004
VI	Refrigeration Plants, Painting, Accommodation.	20%	
	Bridge - The Control Centre of the Ship- Bridge Arrangement and	,	
	Layout, Wheel House, Navigation and Communication	n 4	
	Equipments, Methods of Navigation, Navigational Lights.		
	END SEMESTER EXAM		

QUESTION PAPER PATTERN: Maximum marks :100 Time : 3 hours

PART A

- Answer all 8 questions of 3 marks each.
- 1 question each from modules I to IV and 2 questions each from modules V & VI. PART B
- Answer any 2 full questions out of 3 for each module.
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks.
- Each full question can have maximum of 4 sub questions, if needed.

GD 0 0 (Course Name:	L-T-P-Credits	Year of Introduction
SB206	ANALYSIS OF STRUCTURES	2-1-0-3	2016
Prerequisites			
Course Obje			
	arize and review the basic concepts of str	ructural analysis with	emphasis on analysis of
	ry structures.		
	the students with the force and displaceme	nt methods of structur	ral analysis of beams and
frames	ADI ARDI II.	KALAN	A
	understand and develop concepts regardin	g the comprehensive	strain energy methods of
	analysis.	a applications of plat	atmustures in the field of
	t a scientific approach and to familiarize th	e applications of plate	e structures in the field of
ship tech	to the students to have a comprehensive ide	as of matrix structure	1 analysis with amphasis
	ative advantages of the flexibility method a		• •
	e the students to visualize structural dynam		
	and vibration theory.	nes problems with a p	soper blend of structural
	and violation moory.		
Syllabus:			
by max abt			
Introduction	to Structural Analysis -Determinate & 1	Indeterminate Structu	res-Force Displacement
	e Moment Equation-Moment Distribution		-
	- Castigliano's Theorem- Vibrations of		
		Community Systems	Introduction to Plastic
	-	-	
Theory, Matr	ix Methods of Analysis-Stiffness Method,	Flexiblity Method, 7	
Theory, Matr	-	Flexiblity Method, 7	
Theory, Matr Introduction t	ix Methods of Analysis-Stiffness Method, o theory of plates- Pure Bending, Small De	Flexiblity Method, 7	
Theory, Matr Introduction t Expected Ou	ix Methods of Analysis-Stiffness Method, o theory of plates- Pure Bending, Small De tcome:	Flexiblity Method, 7 eflection.	
Theory, Matr Introduction t Expected Ou Upon success	ix Methods of Analysis-Stiffness Method, o theory of plates- Pure Bending, Small De tcome: ful completion of the course, the student w	Flexiblity Method, Teflection.	
Theory, Matr Introduction t Expected Ou Upon success 1. Demonst	ix Methods of Analysis-Stiffness Method, o theory of plates- Pure Bending, Small De tcome: ful completion of the course, the student w rate understanding of the basic concepts in	Flexiblity Method, 7 eflection. ill be able to: structural analysis.	Fransformation Matrices
Theory, Matr Introduction t Expected Ou Upon success 1. Demonst 2. Solve sin	ix Methods of Analysis-Stiffness Method, o theory of plates- Pure Bending, Small De tcome: ful completion of the course, the student w	Flexiblity Method, 7 eflection. ill be able to: structural analysis.	Fransformation Matrices
Theory, Matr Introduction t Expected Ou Upon success 1. Demonst 2. Solve sin distribution	ix Methods of Analysis-Stiffness Method, o theory of plates- Pure Bending, Small De tcome: ful completion of the course, the student w rate understanding of the basic concepts in the structural analysis problems using the on method & strain energy method.	Flexiblity Method, Teflection.	Fransformation Matrices
Theory, Matr Introduction t Expected Ou Upon success 1. Demonstr 2. Solve sin distribution 3. Demonstr	ix Methods of Analysis-Stiffness Method, o theory of plates- Pure Bending, Small De tcome: ful completion of the course, the student w rate understanding of the basic concepts in aple structural analysis problems using the	Flexiblity Method, Teflection.	Fransformation Matrices-
Theory, Matr Introduction t Expected Ou Upon success 1. Demonst 2. Solve sin distributi 3. Demonst pertaining	ix Methods of Analysis-Stiffness Method, o theory of plates- Pure Bending, Small De tcome: ful completion of the course, the student w rate understanding of the basic concepts in nple structural analysis problems using the on method & strain energy method. rate an understanding of the theory of plate	Flexiblity Method, T eflection. ill be able to: structural analysis. force/displacement m s and be able to solve stiffened plates.	Fransformation Matrices-
 Theory, Matr Introduction t Expected Ou Upon success 1. Demonstr 2. Solve sin distribution 3. Demonstr pertaining 4. Solve sin 	ix Methods of Analysis-Stiffness Method, o theory of plates- Pure Bending, Small De tcome: ful completion of the course, the student we rate understanding of the basic concepts in the structural analysis problems using the on method & strain energy method. rate an understanding of the theory of plate g to analysis of laterally loaded plates and s	Flexiblity Method, T eflection. ill be able to: structural analysis. force/displacement m s and be able to solve stiffened plates. matrix methods.	Fransformation Matrices-
 Theory, Matr Introduction t Expected Ou Upon success 1. Demonstr 2. Solve sin distribution 3. Demonstr pertaining 4. Solve sin 	ix Methods of Analysis-Stiffness Method, o theory of plates- Pure Bending, Small De tcome: ful completion of the course, the student w rate understanding of the basic concepts in the structural analysis problems using the on method & strain energy method. rate an understanding of the theory of plate g to analysis of laterally loaded plates and s the structural analysis problems using the	Flexiblity Method, T eflection. ill be able to: structural analysis. force/displacement m s and be able to solve stiffened plates. matrix methods.	Fransformation Matrices-
 Theory, Matr Introduction t Expected Ou Upon success 1. Demonstr 2. Solve sin distribution 3. Demonstr pertaining 4. Solve sin 	ix Methods of Analysis-Stiffness Method, o theory of plates- Pure Bending, Small De tcome: ful completion of the course, the student w rate understanding of the basic concepts in the structural analysis problems using the on method & strain energy method. rate an understanding of the theory of plate g to analysis of laterally loaded plates and s the structural analysis problems using the	Flexiblity Method, T eflection. ill be able to: structural analysis. force/displacement m s and be able to solve stiffened plates. matrix methods.	Fransformation Matrices
 Theory, Matr Introduction t Expected Ou Upon success 1. Demonstr 2. Solve sin distribution 3. Demonstr pertaining 4. Solve sin 5. Demonstr 	ix Methods of Analysis-Stiffness Method, o theory of plates- Pure Bending, Small De tcome: ful completion of the course, the student w rate understanding of the basic concepts in the structural analysis problems using the on method & strain energy method. rate an understanding of the theory of plate g to analysis of laterally loaded plates and s the structural analysis problems using the	Flexiblity Method, Teflection. ill be able to: structural analysis. force/displacement methods stiffened plates. matrix methods. bration.	Fransformation Matrices- ethod, moment simple problems
 Theory, Matr Introduction t Expected Ou Upon success 1. Demonstriation 2. Solve sin distribution 3. Demonstriation 4. Solve sin 5. Demonstriation 5. Demonstriation 5. Matrix 	ix Methods of Analysis-Stiffness Method, o theory of plates- Pure Bending, Small De tcome: ful completion of the course, the student we rate understanding of the basic concepts in the structural analysis problems using the on method & strain energy method. rate an understanding of the theory of plate g to analysis of laterally loaded plates and s the structural analysis problems using the rate basic understanding of the theory or vi	Flexiblity Method, T eflection. ill be able to: structural analysis. force/displacement m s and be able to solve stiffened plates. matrix methods. bration. d practice; Internation	Fransformation Matrices- ethod, moment simple problems
 Theory, Matr Introduction t Expected Ou Upon success 1. Demonstriation 2. Solve sin distribution 3. Demonstriation 4. Solve sin 5. Demonstriation 5. Demonstriation 5. Matrix Books: Alan V 	ix Methods of Analysis-Stiffness Method, o theory of plates- Pure Bending, Small De tcome: ful completion of the course, the student we rate understanding of the basic concepts in ople structural analysis problems using the on method & strain energy method. rate an understanding of the theory of plate g to analysis of laterally loaded plates and s ople structural analysis problems using the rate basic understanding of the theory or vi Williams; Structural Analysis –in theory an Reddy; Basic Structural Analysis; Tata McG	Flexiblity Method, T eflection. ill be able to: structural analysis. force/displacement m s and be able to solve stiffened plates. matrix methods. bration. d practice; Internation	Fransformation Matrices- ethod, moment simple problems
 Theory, Matr Introduction t Expected Ou Upon success 1. Demonstr 2. Solve sin distribution 3. Demonstr 4. Solve sin 5. Demonstr Text Books: Alan V C. S. H 	ix Methods of Analysis-Stiffness Method, o theory of plates- Pure Bending, Small De tcome: ful completion of the course, the student we rate understanding of the basic concepts in ople structural analysis problems using the on method & strain energy method. rate an understanding of the theory of plate g to analysis of laterally loaded plates and s ople structural analysis problems using the rate basic understanding of the theory or vi Williams; Structural Analysis –in theory an Reddy; Basic Structural Analysis; Tata McG	Flexiblity Method, T eflection. ill be able to: structural analysis. force/displacement m s and be able to solve stiffened plates. matrix methods. bration. d practice; Internation	Fransformation Matrices- ethod, moment simple problems
 Theory, Matr Introduction t Expected Ou Upon success 1. Demonstriation 2. Solve sim distribution 3. Demonstriation 4. Solve sim 5. Demonstriation 5. Demonstriation 5. Demonstriation 6. C. S. Herein 7. Reference Books 	ix Methods of Analysis-Stiffness Method, o theory of plates- Pure Bending, Small De tcome: ful completion of the course, the student we rate understanding of the basic concepts in ople structural analysis problems using the on method & strain energy method. rate an understanding of the theory of plate g to analysis of laterally loaded plates and s ople structural analysis problems using the rate basic understanding of the theory or vi Williams; Structural Analysis –in theory an Reddy; Basic Structural Analysis; Tata McG	Flexiblity Method, Teflection. ill be able to: structural analysis. force/displacement methods stiffened plates. matrix methods. bration. d practice; Internation Graw-Hill.	Fransformation Matrices- ethod, moment simple problems
Theory, Matr Introduction t Expected Ou Upon success 1. Demonstr 2. Solve sin distribution 3. Demonstr pertaining 4. Solve sin 5. Demonstr Text Books: • Alan V • C. S. H Reference Book	ix Methods of Analysis-Stiffness Method, o theory of plates- Pure Bending, Small De tcome: ful completion of the course, the student we rate understanding of the basic concepts in the structural analysis problems using the on method & strain energy method. rate an understanding of the theory of plate g to analysis of laterally loaded plates and s the structural analysis problems using the rate basic understanding of the theory or vi Williams; Structural Analysis –in theory an Reddy; Basic Structural Analysis; Tata McG ooks:	Flexiblity Method, Teflection. ill be able to: structural analysis. force/displacement methods stiffened plates. matrix methods. bration. d practice; Internation Graw-Hill.	Fransformation Matrices- ethod, moment simple problems

	Course Plan				
Module	Content	Hours	Sem. Exam Marks		
Ι	I Introduction to Structural Analysis: Concept of Determinate & Indeterminate Structures; Continuous Beams; Force/Displacement Method of Analysis; Clapeyron's Theorem of Three Moments; Support Settlement;				
Π	Moment Distribution Method: Beams and Rigid Jointed Plane Frames (with and without sway); Effect of Support Settlement;	7	15%		
	FIRST INTERNAL EXAM				
III	Strain Energy Methods: Principle of Virtual Work; Strain Energy & Complementary Energy; Castigliano's Theorems.	6	15%		
IV	 Vibrations of Continuous Systems: Vibration of Strings and Rods; Vibration of Beams; Vibration of Shafts. Introduction to Theory of Plasticity. 	6	15%		
	SECOND INTERNAL EXAM				
V	Matrix Methods: Stiffness Method (Continuous Beams; Rigid Jointed Frames); Flexibility Method (Continuous Beams; Rigid Jointed Frames); Transformation Matrices and its Applications.	9	20%		
VI	Introduction to Theory of Plates: Pure Bending of Plates; Small Deflection Analysis of Laterally Loaded Plates; Boundary Conditions; Navier's Solution; Levy's Solution; Introduction to Stiffened Plates and Orthotropic Plate Model	6	20%		

Maximum marks : 100

Time : 3 hours

Estd.

PART A

- Answer all 8 questions of 3 marks each. 014
- 1 question each from modules I to IV and 2 questions each from modules V & VI.

- Answer any 2 full questions out of 3 for each module.
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks.
- Each full question can have maximum of 4 sub questions, if needed.

Course No:	Course Name:	L-T-P-Credits	Year of Introduction			
SB207	BASIC SHIP THEORY	2-1-0-3	2016			
Prerequisites: -Nil-						

Course Objectives:

- 1. To impart basic knowledge on ship's geometry and lines plan.
- 2. To illustrate application of approximate integration methods to hull form calculations.
- 3. To impart the basic concepts of hydrostatics and fundamentals of stability.

Syllabus:

Representation of Ship's Hull Geometry– Offset Table, Lines Plan, Fairing; Approximate Integration Rules– Applications to Hull Form Calculations; Bonjean Calculations– Sectional Area Curves; Hydrostatic Calculations and Curves; Buoyancy and Weight; Watertight Subdivision of Ships – Causes of Damage and their Effects, Permeability, Floodable Length Curve.

Expected Outcome:

On successful completion of the course, the student will be able to:

- 1. Geometrically define the hull form and draw lines plan.
- 2. Apply the procedures of numerical integration and calculate hydrostatic properties.
- 3. Understand and plot sectional area curves, bonjean curves, and hydrostatic curves.

SIG.

- 4. Understand the concept of weight and buoyancy of a ship.
- 5. Understand the concept of subdivision and floodable length curves.

Text Book:

- Rawson and Tupper; Basic Ship Theory.
- Eric Tupper; Introduction to Naval Architecture.

Reference Books:

- Edward V. Lewis; Principles of Naval Architecture, Vol 1.
- Adrian B. Biran; Ship Hydrostatics and Stability.
- Capt D.C. Derret; Ship Stability for Masters and Mates.

Course Plan:

Module	Content	Hours	Sem. Exam Marks
	Representation of Ship's Hull Geometry-Introduction.	2	
Ι	Lines Plan- Profile, Body Plan, Half Breadth Plan and Diagonal Plan.	3	15%
	Table of Offsets- Fairing Process.	2	
	Integration Rules – Calculation of Areas, Volumes and Moments.	2	
II	Trapezoidal Rule.	1	15%
	Simpson's Rules- 1-4-1, 1-3-3-1, 5, 8,-1 and 3, 10,-1 Rule.		
	Tchebycheff's Rule.	1	
FIRST INTERNAL EXAM			
III	Bonjean Area and Moments.	3	15%
111	Sectional Area Curves– Calculation and Drawing.	2	1.5 /0

	Bonjean Curves– Calculation and Drawing.	2	
	Hydrostatics– Definition and Relevance.	1	
	Definition of Properties– Volume of Displacement/		
	Displacement, Centre of Buoyancy, Centre of Floatation, KM _T	3	
IV	And BM _T Metacentric Radius, TPC 1cm, MCT 1cm, Form	5	15%
	Coefficients (C _B , C _P , C _M And C _W), LCF.		
	Hydrostatic Calculations.	3	
	Hydrostatic Curves.	5	
	SECOND INTERNAL EXAM		
	Buoyancy and Weight of Ship- Definitions, Components of	2	
	Weight.	2	
V	Centre of Gravity and Centre of Buoyancy.	1	20%
v	Archimedes Principle and Laws of Floatation, Equilibrium	2	2070
	Conditions.	2	
	Effect of Change of Water Density, Fresh Water Allowance.	2	
	Causes and Effects of Damage of Ships.	1	
	Watertight Subdivisions- Need and Types.	1	
VI	Concept of Bulkhead Deck, Margin Line and Permeability.	1	20%
	Factor of Subdivision, Compartment Standard, Criterion Numeral.	2	
	Floodable Length– Concept, Curves.	2]
	END SEMESTER EXAM		•

Maximum marks : 100

Time : 3 hours

PART A

- Answer all 8 questions of 3 marks each.
- 1 question each from modules I to IV and 2 questions each from modules V & VI. Ester

11

- Answer any 2 full questions out of 3 for each module.
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks.
- Each full question can have maximum of 4 sub questions, if needed.

Course code	Course Name	L-T-P-Credits	Year of Introduction
SB231	MECHANICS OF FLUIDS LAB	0-0-3-1	2016
Prerequisite :	SB203 Mechanics of fluids		
Course Object	ives:		
1. Introduce r	najor instruments commonly used in the de	omain of fluid mecha	anics.
2. Familiariza	ation with setting up of experiments in a la	boratory environmen	ıt.
3. Provide an	environment to enable correlation of theory	retical knowledge ga	ined in the class room
	ysical world.		
-	es/ Experiments (Minimum 10 are man	datory)	A
			1
	arious Pressure, Velocity and Flow Measu <u>:</u> Pressure/ Vacuum Gauge, U Tube Mano		low Meter etc.
	leasurements using a U-Tube Manometer. <u>:</u> U Tube Manometer.	ΙΙΥ	
	tion of Metacentric Height and Radius of C <u>:</u> Flat Bottom Pontoon, Water Tank.	Gyration of Floating	Bodies.
1	tal Verification of Bernoulli's Theorem. <u>:</u> Bernoulli Apparatus.		
<u>Equipment</u>	tion of Darcy's Constant and Chezy's Con <u>:</u> Experiment set up with pipes of various of the Manometer.	-	flow control valves,
	tion of Critical Velocity in Pipe Flow. <u>: Reynold's Apparatus.</u>		
	tion of Minor Losses in Pipe Flow. <u>:</u> Hydraulic Bench, Pipe Bends & Fittings	Apparatus.	
	tion of Type of Flow using Reynolds Num <u>:</u> Reynold's Apparatus.	ber.	
•	aminar-Turbulent Transition for Flow in a <u>:</u> Reynold's Apparatus.	Tube.	
	tion of Coefficient of Discharge of V Note	h.	
	tion of Coefficient of Discharge of Rectange : Supply Tank, Collecting Tank, Rectangui		Notches.
	tion of Coefficient of Discharge of Trapezo : Supply Tank, Collecting Tank, Trapezoia		
13. Determinat	tion of Hydraulic Coefficients of Orifices u	under Constant Head	Method.

Equipment: Supply Tank, Collecting Tank, Orifices.

- 14. Determination of Hydraulic Coefficients of Mouthpieces under Constant Head Method. *Equipment:* Supply Tank, Collecting Tank, Mouthpieces.
- 15. Determination of Hydraulic Coefficients of Orifices under Time of Emptying Method. *Equipment:* Supply Tank, Collecting Tank, Orifices.
- 16. Determination of Hydraulic Coefficients of Mouthpieces under Time of Emptying Method. <u>Equipment:</u> Supply Tank, Collecting Tank, Mouthpieces.
- 17. Calibration of Venturimeter. <u>Equipment:</u> Venturimeter, U Tube Manometer, Supply Tank, Collecting Tank.
- 18. Calibration of Orificemeter. <u>Equipment:</u> Orificemeter, U Tube Manometer, Supply Tank, Collecting Tank.
- 19. Calibration of Watermeter. <u>Equipment:</u> Watermeter, Supply Tank, Collecting Tank.
- 20. Study and acquire a thorough knowledge of the various Pipe Fittings and Plumbing Tools. <u>Equipment:</u> Fittings like Reducers, Bends, Elbows, Y Connectors, Union, Coupling etc; Tools like Pipe Wrenches, Pipe Threaders, Pipe Bending Machine etc.
- 21. Study the use of different types of Valves. <u>Equipment:</u> Gate Valve, Butterfly Valve, Globe Valve, Relief Valve, Non-return valve etc.
- 22. Determination of Chezy's Constant and Manning's Number for Open Channel Flow. <u>Equipment:</u> Open channel of rectangular cross section with slope adjusting mechanism.

Note: Only major equipments are indicated.

Expected Outcome:

Upon successful completion of the course, the student will be:

- i. Familiar with the arrangement and conduct of experiments in the fluid mechanics laboratory environment.
- ii. Able to note down relevant readings and perform calculations while an experiment is in progress.
- iii. Able to comprehend the factors responsible for variation between theoretical and experimental results pertaining to the domain of fluid mechanics.

Text Books:

- Yunus A. Cenegel, John M. Cimbala; Fluid Mechanics- Fundamentals and Applications (in SI Units); McGraw Hill.
- Bansal R.K, Fluid Mechanics and Hydraulic Machines (SI Units); Laxmi Publications.

Course	Course Name	L-T-P-Credits	Year of
code			Introduction
SB232	LINES PLAN & HYDROSTATICS LAB	0-0-3-1	2016
Prerequisite			
Course Obje			
-	de practical experience on plotting Lines plan an	d fairing process usir	ig any ship design
software			
-	de practical experience on computation of ship h		
3. To provi	de practical exposure on Intact and damage Stabi	ility computations.	
	cises/ Experiments (Minimum 10 Mandatory)		
•	Principal Parameters of the Hull form of a Ship.		
-	Various Approaches in Generating Lines Plan of	f Ships.	
3. Modellin	ng of Hull Surface from Offset Data.	1 1	
4. Modellin	ng of Hull Surface by Modifying <mark>Ge</mark> neral Hull Fo	orm from Software D	atabase.
	ng Hull Surface by Using Custom Definition of B	•	ections.
6. Solid Mo	odelling from Boundary Surfaces (e.g Ship Super	rstructure).	
7. Solid Mo	odelling by Revolving Closed Areas about an Ax	is (e.g Submarine Hu	11).
8. Boolean	operations on Solids (e.g Bow Thruster Tunnel M	Modelling).	
9. Modellin	g Tanks and Cargo Spaces.		
10. Plotting	Lines Plan of a Vessel from Given Offset Table.		
11. Computa	tion and Plotting of Bonjean and Sectional Area	Curve.	
12. Computa	tion of Ship Hydrostatic Particulars.		
13. Calculate	e Equilibrium Condition of a Giv <mark>en</mark> Ship at Given	n Loading Conditions	5.
14. Computa	tion of Transverse Metacentric Height.		
15. Computa	tion of Stability at Small and Large Angles of H	eel.	
16. Computa	tti <mark>on of Static Stability and Cross</mark> Curves of Stab	ility.	
17. Dynamic	Stability Computations.		
18. Generate	Stability Booklet Report for Given Ship Particu	lars and Conditions.	
19. Carryout	Floodable Length Calculations for a Ship at Giv	<mark>en Loading Co</mark> nditio	n.
20. Damage	Stability Computations at Given Condition.		
· · ·	Any Ship Design & Analysis software eg. NAPA,	PARAMARINE,GHS	, FORAN,
TRIBON etc.	2014		
Course Outo		able to	
-	sful completion of the course, the student will be		
	lines plan for given offset table and perform fair	0	
	report of hydrostatics particulars for given hull		
	e and analyse initial and damage stability results	for given conditions.	
Text Books:	and Tunnar Davis Shin Theory, Dutterweath Us	inomonn	
	and Tupper; Basic Ship Theory; Butterworth-He		
	ret; Ship Stability for Masters and Mates 5E; Bu	tterworth-Heinemanr	1.
-	per, Introduction to Naval Architecture.		
• Lewis, E	.U.; Principles of Naval Architecture, SNAME, I	New Jersey, U.S.A.	